

 TECHNICAL REPORT

© The Broadband Forum. All rights reserved.

TR-069
CPE WAN Management Protocol

Issue: 1 Amendment 4
Issue Date: July 2011

Protocol Version: 1.3

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 2 of 190

Notice

The Broadband Forum is a non-profit corporation organized to create guidelines for

broadband network system development and deployment. This Broadband Forum

Technical Report has been approved by members of the Forum. This Broadband Forum

Technical Report is not binding on the Broadband Forum, any of its members, or any

developer or service provider. This Broadband Forum Technical Report is subject to

change, but only with approval of members of the Forum. This Technical Report is

copyrighted by the Broadband Forum, and all rights are reserved. Portions of this

Technical Report may be copyrighted by Broadband Forum members.

This Broadband Forum Technical Report is provided AS IS, WITH ALL FAULTS. ANY

PERSON HOLDING A COPYRIGHT IN THIS BROADBAND FORUM TECHNICAL

REPORT, OR ANY PORTION THEREOF, DISCLAIMS TO THE FULLEST EXTENT

PERMITTED BY LAW ANY REPRESENTATION OR WARRANTY, EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY:

(A) OF ACCURACY, COMPLETENESS, MERCHANTABILITY, FITNESS FOR A

 PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE;

(B) THAT THE CONTENTS OF THIS BROADBAND FORUM TECHNICAL

 REPORT ARE SUITABLE FOR ANY PURPOSE, EVEN IF THAT PURPOSE IS

 KNOWN TO THE COPYRIGHT HOLDER;

(C) THAT THE IMPLEMENTATION OF THE CONTENTS OF THE TECHNICAL

 REPORT WILL NOT INFRINGE ANY THIRD PARTY PATENTS,

 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

By using this Broadband Forum Technical Report, users acknowledge that

implementation may require licenses to patents. The Broadband Forum encourages but

does not require its members to identify such patents. For a list of declarations made by

Broadband Forum member companies, please see http://www.broadband-forum.org. No

assurance is given that licenses to patents necessary to implement this Technical Report

will be available for license at all or on reasonable and non-discriminatory terms.

ANY PERSON HOLDING A COPYRIGHT IN THIS BROADBAND FORUM

TECHNICAL REPORT, OR ANY PORTION THEREOF, DISCLAIMS TO THE

FULLEST EXTENT PERMITTED BY LAW (A) ANY LIABILITY (INCLUDING

DIRECT, INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES UNDER ANY

LEGAL THEORY) ARISING FROM OR RELATED TO THE USE OF OR

RELIANCE UPON THIS TECHNICAL REPORT; AND (B) ANY OBLIGATION TO

UPDATE OR CORRECT THIS TECHNICAL REPORT.

Broadband Forum Technical Reports may be copied, downloaded, stored on a server or

otherwise re-distributed in their entirety only, and may not be modified without the

advance written permission of the Broadband Forum.

The text of this notice must be included in all copies of this Broadband Forum Technical

Report.

http://www.broadband-forum.org/

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 3 of 190

Issue History

Issue

Number

Issue Date Issue Editor Changes

Issue 1 May 2004 Jeff Bernstein, 2Wire

Tim Spets, Westell

Issue 1

Issue 1

Amendment 1

November 2006 Jeff Bernstein, 2Wire

John Blackford, 2Wire

Mike Digdon, SupportSoft

Heather Kirksey, Motive

William Lupton, 2Wire
Anton Okmianski, Cisco

Clarification of original document

Issue 1

Amendment 2

November 2007 William Lupton, 2Wire

Davide Moreo, Telecom Italia

CWMP v1.1: Multicast Download support,

10 AUTONOMOUS TRANSFER

COMPLETE event,

AutonomousTransferComplete method,

additional Download fault codes,

interoperability clarifications, minor editorial
changes.

Issue 1

Amendment 3

November 2010 John Blackford, Pace

Heather Kirksey, Alcatel-Lucent

William Lupton, Pace

CWMP v1.2: Small updates for IPv6 related

to DHCP, Additions for Software Module

Management support (including new RPCs,

Inform Event Codes, fault codes, and an

Annex on UUIDs), ScheduleDownload RPC,
and CancelTransfer RPC.

Issue 1

Amendment 4

July 2011 Sarah Banks, Cisco

Andrea Colmegna, FASTWEB

Tim Spets, Motorola Mobility

CWMP v1.3 Added Proxy management

support and added Annex J and Appendix I.

Table 4 Session timeout updated. Removed
xsd Section A.6.

Added Alias-Based Addressing additions,

Section 3.6.1, Appendix II, and RPC
Definition updates.

Comments or questions about this Broadband Forum Technical Report should be directed

to info@broadband-forum.org.

mailto:info@broadband-forum.org

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 4 of 190

Editors Sarah Banks

Andrea Colmegna

Tim Spets

Cisco

FASTWEB

Motorola Mobility

Editors:

Object Addressing

Extensions

Sarah Banks

Andrea Colmegna

Ping Fang

Nils Magnusson

Anton Okmyanskiy

Staffan Ungsgard

Cisco

FASTWEB

Huawei Technologies

TeliaSonera

Cisco

TeliaSonera

Editors:

Remote Management of

non-TR-069 devices

John Blackford

Ping Fang

Tim Spets

Pace

Huawei Technologies

Motorola Mobility

BroadbandHome™

Working Group Chairs

Greg Bathrick

Heather Kirksey

PMC-Sierra

Alcatel-Lucent

Vice Chair Jason Walls UNH

Chief Editor Michael Hanrahan Huawei Technologies

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 5 of 190

Table of Contents

1 Introduction .. 15
1.1 Functional Components ... 15

1.1.1 Auto-Configuration and Dynamic Service Provisioning 15
1.1.2 Software/Firmware Image Management .. 16
1.1.3 Software Module Management .. 16

1.1.4 Status and Performance Monitoring .. 16
1.1.5 Diagnostics ... 16

1.2 Positioning in the End-to-End Architecture ... 16
1.3 Security Goals .. 17

1.4 Architectural Goals .. 17
1.5 Assumptions ... 18
1.6 Terminology ... 19
1.7 Abbreviations ... 21

1.8 Document Conventions .. 23

2 Architecture .. 24
2.1 Protocol Components ... 24

2.2 Security Mechanisms ... 25
2.3 Architectural Components ... 25

2.3.1 Parameters .. 25
2.3.2 File Transfers ... 26
2.3.3 CPE Initiated Sessions ... 26

2.3.4 Asynchronous ACS Initiated Sessions ... 27

3 Procedures and Requirements .. 28
3.1 ACS Discovery .. 28
3.2 Connection Establishment ... 31

3.2.1 CPE Connection Initiation ... 31

3.2.2 ACS Connection Initiation ... 33
3.3 Use of TLS and TCP .. 35

3.4 Use of HTTP .. 37
3.4.1 Encoding SOAP over HTTP .. 37

3.4.2 Transaction Sessions .. 38
3.4.3 File Transfers ... 40

3.4.4 Authentication .. 40
3.4.5 Digest Authentication .. 41
3.4.6 Additional HTTP Requirements .. 42

3.5 Use of SOAP .. 42
3.6 RPC Support Requirements ... 48

3.6.1 Alias-Based Addressing Mechanism Requirements 49
3.7 Transaction Session Procedures ... 52

3.7.1 CPE Operation ... 52
3.7.2 ACS Operation ... 62
3.7.3 Transaction Examples .. 65

Normative References ... 67

Annex A. RPC Methods .. 70

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 6 of 190

A.1 Introduction .. 70

A.2 RPC Method Usage .. 70
A.2.1 Data Types ... 70
A.2.2 Instance Identifiers ... 71

A.2.2.1 Instance Number Identifier .. 71
A.2.2.2 Instance Alias Identifier ... 72

A.2.3 Other Requirements ... 72

A.3 Baseline RPC Messages ... 72
A.3.1 Generic Methods .. 72

A.3.1.1 GetRPCMethods .. 73
A.3.2 CPE Methods ... 74

A.3.2.1 SetParameterValues ... 74
A.3.2.2 GetParameterValues... 77
A.3.2.3 GetParameterNames... 77

A.3.2.4 SetParameterAttributes .. 80
A.3.2.5 GetParameterAttributes .. 84
A.3.2.6 AddObject .. 85
A.3.2.7 DeleteObject .. 88

A.3.2.8 Download ... 90
A.3.2.9 Reboot .. 94

A.3.3 ACS Methods ... 95
A.3.3.1 Inform .. 95
A.3.3.2 TransferComplete .. 97

A.3.3.3 AutonomousTransferComplete .. 99

A.4 Optional RPC Messages ... 100
A.4.1 CPE Methods ... 100

A.4.1.1 GetQueuedTransfers .. 100

A.4.1.2 ScheduleInform .. 101
A.4.1.3 SetVouchers ... 101
A.4.1.4 GetOptions ... 102

A.4.1.5 Upload .. 103
A.4.1.6 FactoryReset .. 105
A.4.1.7 GetAllQueuedTransfers ... 105

A.4.1.8 ScheduleDownload .. 107

A.4.1.9 CancelTransfer ... 111

A.4.1.10 ChangeDUState .. 111
A.4.2 ACS Methods ... 115

A.4.2.1 Kicked .. 115
A.4.2.2 RequestDownload .. 115
A.4.2.3 DUStateChangeComplete .. 116

A.4.2.4 AutonomousDUStateChangeComplete ... 119

A.5 Fault Handling .. 122
A.5.1 CPE Fault Codes .. 122
A.5.2 ACS Fault Codes .. 124

A.6 RPC Method XML Schema ... 124

Annex B. Removed ... 125

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 7 of 190

Annex C. Signed Vouchers ... 126

C.1 Overview .. 126

C.2 Control of Options Using Vouchers ... 126

C.3 Voucher Definition ... 127

Annex D. Web Identity Management .. 131

D.1 Overview .. 131

D.2 Use of the Kicked RPC Method ... 131

D.3 Web Identity Management Procedures .. 132

D.4 LAN Side Interface .. 133

Annex E. Signed Package Format ... 135

E.1 Introduction .. 135

E.2 Signed Package Format Structure .. 135
E.2.1 Encoding Conventions ... 136

E.3 Header Format .. 136

E.4 Command List Format ... 136
E.4.1 Command Types .. 137
E.4.2 End Command ... 138

E.4.3 Extract and Add Commands .. 138
E.4.4 Remove Commands ... 139

E.4.5 Move Commands ... 139
E.4.6 Version and Description Commands ... 140

E.4.7 Timeout Commands ... 140
E.4.8 Reboot Command .. 142
E.4.9 Format File System .. 142

E.4.10 Minimum and Maximum Version Commands .. 142
E.4.11 Role Command .. 144

E.4.12 Minimum Storage Commands ... 144
E.4.13 Required Attributes Command .. 144

E.5 Signatures ... 145

Annex F. Device-Gateway Association .. 147

F.1 Introduction .. 147
F.1.1 Terminology ... 147

F.2 Procedures .. 148
F.2.1 Gateway Requirements .. 148
F.2.2 Device Requirements ... 149
F.2.3 ACS Requirements ... 150
F.2.4 Device-Gateway Association Flows .. 151
F.2.5 DHCP Vendor Options .. 152

F.3 Security Considerations .. 153

Annex G. Connection Request via NAT Gateway .. 155

G.1 Introduction .. 155

G.2 Procedures .. 155
G.2.1 CPE Requirements ... 156

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 8 of 190

G.2.1.1 Binding Discovery ... 157
G.2.1.2 Maintaining the Binding .. 158
G.2.1.3 Communication of the Binding Information to the ACS 159
G.2.1.4 UDP Connection Requests ... 161

G.2.2 ACS Requirements ... 162
G.2.2.1 STUN Server Requirements .. 162
G.2.2.2 Determination of the Binding Information 163
G.2.2.3 UDP Connection Requests ... 164

G.2.3 Message Flows ... 166

G.3 Security Considerations .. 169

Annex H. Software Module Management UUID Usage ... 170

H.1 Overview .. 170

H.2 UUID Generation Requirements .. 171

H.3 CPE Requirements ... 171

Annex I. ... 172

Annex J. CWMP Proxy Management .. 173

J.1 Introduction .. 173

J.2 The Virtual CWMP Device Mechanism .. 174
J.2.1 Data Model Requirements ... 174

J.2.2 Proxied Device Identification and Modeling ... 174
J.2.3 Proxied Device Availability ... 175

J.3 The Embedded Object Mechanism .. 176
J.3.1 Proxied Device Data Modeling and Provisioning 176

J.3.2 Proxied Device Availability ... 176

Appendix I. CPE Proxier Implementation Guidelines .. 178

I.1 Introduction .. 178

I.2 Common Guidelines for the Virtual CWMP Device and Embedded Object
Mechanisms .. 178

I.2.1 Unsupported CWMP RPC Commands by the Proxy Protocol 178

I.2.2 Support for Proxy Protocol Methods with no Matching RPC 178
I.2.3 Support for Transactional Integrity .. 179

I.3 Embedded Object Mechanism ... 179
I.3.1 Device Discovery ... 179
I.3.2 CPE Proxier use of Polling .. 180
I.3.3 ACS Query of RPC Execution ... 180

I.3.4 Support for Proxy Protocol Methods Reboot and Download 180

I.4 Virtual CWMP Device Mechanism ... 181
I.4.1 Device Discovery ... 181
I.4.2 Request for Session Timeout Extension .. 181
I.4.3 CPE Proxier use of Caching .. 182
I.4.4 Virtual CWMP Device Error Scenarios ... 183

I.5 Proxy Management Support Example.. 184

Appendix II. Alias-Based Addressing Mechanism – Theory of Operations 187

II.1 Introduction .. 187

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 9 of 190

II.2 Multi-Instance Objects Definition .. 187

II.3 Instance Alias as a Data Model Parameter ... 188

II.4 Multi-Instance Object Creation .. 188

II.5 AddObject RPC Extension ... 189

II.6 Auto-Creation of Object Instances ... 189

II.7 Support for Alias-Based Addressing Mechanism .. 190

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 10 of 190

List of Tables

Table 1 – Protocol layer summary .. 24
Table 2 – Encapsulated Vendor Specific Options .. 29
Table 3 – Session Retry Wait Intervals ... 33

Table 4 – SOAP Header Elements .. 47
Table 5 – RPC message requirements .. 48
Table 6 – CPE Message Transmission Constraints .. 54
Table 7 – Event Types .. 57
Table 8 – ACS Message Transmission Constraints .. 63

Table 9 – Data types ... 70

Table 10 – GetRPCMethods arguments ... 73
Table 11 – GetRPCMethodsResponse arguments .. 73

Table 12 – SetParameterValues arguments .. 74
Table 13 – SetParameterValuesResponse arguments ... 74
Table 14 – ParameterValueStruct definition ... 76

Table 15 – GetParameterValues arguments .. 77
Table 16 – GetParameterValuesResponse arguments .. 77
Table 17 – GetParameterNames arguments .. 78

Table 18 – GetParameterNamesResponse arguments .. 79
Table 19 – ParameterInfoStruct definition ... 79

Table 20 – SetParameterAttributes arguments ... 80

Table 21 – SetParameterAttributesResponse arguments .. 81

Table 22 – SetParameterAttributesStruct definition ... 81
Table 23 – GetParameterAttributes arguments ... 84

Table 24 – GetParameterAttributesResponse arguments ... 84
Table 25 – ParameterAttributeStruct definition .. 84
Table 26 – AddObject arguments ... 87

Table 27 – AddObjectResponse arguments .. 87
Table 28 – DeleteObject arguments .. 89

Table 29 – DeleteObjectResponse arguments .. 89
Table 30 – Download arguments .. 91
Table 31 – DownloadResponse arguments ... 94

Table 32 – Reboot arguments ... 95
Table 33 – RebootResponse arguments .. 95
Table 34 – Inform arguments .. 95
Table 35 – InformResponse arguments .. 96

Table 36 – DeviceIdStruct definition .. 96
Table 37 – EventStruct definition ... 97
Table 38 – TransferComplete arguments .. 98
Table 39 – TransferCompleteResponse arguments .. 98
Table 40 – FaultStruct definition .. 98

Table 41 – AutonomousTransferComplete arguments ... 99
Table 42 – AutonomousTransferCompleteResponse arguments 100
Table 43 – GetQueuedTransfers arguments ... 100

Table 44 – GetQueuedTransfersResponse arguments .. 100

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 11 of 190

Table 45 – QueuedTransferStruct definition .. 100
Table 46 – ScheduleInform arguments ... 101
Table 47 – ScheduleInformResponse arguments .. 101
Table 48 – SetVouchers arguments .. 101

Table 49 – SetVouchersResponse arguments ... 102
Table 50 – GetOptions arguments .. 102
Table 51 – GetOptionsResponse arguments ... 102
Table 52 – OptionStruct definition ... 102
Table 53 – Upload arguments ... 103

Table 54 – UploadResponse arguments .. 105
Table 55 – FactoryReset arguments .. 105
Table 56 – FactoryResetResponse arguments .. 105

Table 57 – GetAllQueuedTransfers arguments .. 105
Table 58 – GetAllQueuedTransfersResponse arguments ... 106
Table 59 – AllQueuedTransferStruct definition ... 106

Table 60 – ScheduleDownload arguments ... 108
Table 61 – ScheduleDownloadResponse arguments .. 109

Table 62 – TimeWindowStruct definition .. 109
Table 63 – CancelTransfer arguments .. 111
Table 64 – CancelTransferResponse arguments ... 111

Table 65 – ChangeDUState Arguments .. 112
Table 66 – ChangeDUStateResponse Arguments .. 113

Table 67 – OperationStruct Types .. 113

Table 68 – InstallOpStruct Definition ... 113

Table 69 – UpdateOpStruct Definition ... 113
Table 70 – UninstallOpStruct Definition .. 114

Table 71 – Kicked arguments ... 115
Table 72 – KickedResponse arguments .. 115
Table 73 – RequestDownload arguments ... 115

Table 74 – RequestDownloadResponse arguments .. 116
Table 75 – ArgStruct definition .. 116

Table 76 – DUStateChangeComplete Arguments .. 117
Table 77 – OpResultStruct Definition .. 117

Table 78 – FaultStruct Definition ... 118

Table 79 – DUStateChangeCompleteResponse Arguments ... 119

Table 80 – AutonomousDUStateChangeComplete Arguments 120
Table 81 – AutonOpResultStruct Definition .. 120
Table 82 – FaultStruct Definition ... 121
Table 83 – AutonomousDUStateChangeCompleteResponse Arguments 122
Table 84 – Fault codes .. 122

Table 85 – Fault codes .. 124
Table 86 – Option specification definition ... 127
Table 87 – DeviceIdStruct definition .. 128
Table 88 – Recommended CGI Arguments for the kick URL 133
Table 89 – Signed package component summary ... 135
Table 90 – Signed package header format .. 136

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 12 of 190

Table 91 – Command format .. 136
Table 92 – Command Type summary ... 137
Table 93 – Value format for the extract and add commands .. 138
Table 94 – Value format for the remove commands .. 139

Table 95 – Value format for the move commands ... 140
Table 96 – Value format for the timeout commands .. 141
Table 97 – Timeout command definitions .. 142
Table 98 – Value format for the minimum and maximum version commands 143
Table 99 – Value format for the role command .. 144

Table 100 – Value format for the minimum storage commands 144
Table 101 – Value format for the required attributes command 145
Table 102 – Encapsulated Vendor-Specific Option-Data fields 153

Table 103 – Optional STUN attributes used in Binding Request messages 159

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 13 of 190

List of Figures

Figure 1 – Positioning in the End-to-End Architecture .. 17
Figure 2 – Protocol stack .. 24
Figure 3 – Transaction Session Example .. 65

Figure 4 – Example with the ACS using HoldRequests equal true 66
Figure 5 – Example Option specification ... 128
Figure 6 – Example signed Voucher ... 128
Figure 7 – Sequence of events for the ―kick‖ mechanism .. 133
Figure 8 – Signed package format .. 135

Figure 9 – Download state diagram used for timeout model .. 141

Figure 10 – Device-Gateway Association using DHCP Discover 151
Figure 11 – Device-Gateway Association Using DHCP Inform 152

Figure 12 – Binding discovery / maintenance from the primary source port 166
Figure 13 – Binding Request from secondary source port for binding timeout discovery

 ... 167

Figure 14 – Binding change notification authenticated by the ACS 168
Figure 15 – Binding change notification not authenticated by the ACS 168
Figure 16 – UDP Connection Request .. 168

Figure 17 – Proxy management terminology .. 173
Figure 18 – CPE Proxier and Proxied Device references ... 174

Figure 19 – Turnaround time .. 182

Figure 20 – Router supporting 6 Proxied Devices .. 184

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 14 of 190

Executive Summary

A protocol for communication between a CPE and Auto-Configuration Server (ACS) that

encompasses secure auto-configuration as well as other CPE management functions

within a common framework.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 15 of 190

1 Introduction
Note – Sections 1 and 2 of this document are introductory and do not define requirements of this

protocol.

TR-069 describes the CPE WAN Management Protocol, intended for communication

between a CPE and Auto-Configuration Server (ACS). The CPE WAN Management

Protocol defines a mechanism that encompasses secure auto-configuration of a CPE, and

also incorporates other CPE management functions into a common framework.

This document specifies the generic requirements of the management protocol methods

which can be applied to any TR-069 CPE. Other documents specify the managed

objects, or data models, for specific types of devices or services.

1.1 Functional Components

The CPE WAN Management Protocol is intended to support a variety of functionalities

to manage a collection of CPE, including the following primary capabilities:

 Auto-configuration and dynamic service provisioning

 Software/firmware image management

 Software module management

 Status and performance monitoring

 Diagnostics

1.1.1 Auto-Configuration and Dynamic Service Provisioning

The CPE WAN Management Protocol allows an ACS to provision a CPE or collection of

CPE based on a variety of criteria.

The provisioning mechanism allows CPE provisioning at the time of initial connection to

the broadband access network, and the ability to re-provision or re-configure at any

subsequent time. This includes support for asynchronous ACS-initiated re-provisioning

of a CPE.

The identification mechanisms included in the protocol allow CPE provisioning based

either on the requirements of each specific CPE, or on collective criteria such as the CPE

vendor, model, software version, or other criteria.

The protocol also provides optional tools to manage the CPE-specific components of

optional applications or services for which an additional level of security is required to

control, such as those involving payments. The mechanism for control of such

applications and services is the Software Module Management mechanism as defined in

A.4.1.10 (ChangeDUState RPC), A.4.2.3 (DUStateChangeComplete RPC), and described

in Appendix II / TR-157 Amendment 3 [29].

The provisioning mechanism allows straightforward future extension to allow

provisioning of services and capabilities not yet included in this version of the

specification.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 16 of 190

1.1.2 Software/Firmware Image Management

The CPE WAN Management Protocol provides tools to manage downloading of CPE

software/firmware image files. The protocol provides mechanisms for version

identification, file download initiation (ACS initiated downloads and optional CPE

initiated downloads), and notification of the ACS of the success or failure of a file

download.

1.1.3 Software Module Management

The CPE WAN Management Protocol enables an ACS to manage modular software and

execution environments on a CPE. Capabilities provided include the ability to install,

update, and uninstall software modules as well as notification to the ACS of success or

failure of each action. The protocol also provides support to start and stop applications

on the CPE, enable and disable execution environments, and inventory the software

modules available on the device.

1.1.4 Status and Performance Monitoring

The CPE WAN Management Protocol provides support for a CPE to make available

information that the ACS may use to monitor the CPE‘s status and performance statistics.

It also defines a set of mechanisms that allow the CPE to actively notify the ACS of

changes to its state.

1.1.5 Diagnostics

The CPE WAN Management Protocol provides support for a CPE to make available

information that the ACS may use to diagnose and resolve connectivity or service issues

as well as the ability to execute defined diagnostic tests.

1.2 Positioning in the End-to-End Architecture

The ACS is a server that resides in the network and manages devices in or at the

subscriber premises. The CPE WAN Management Protocol may be used to manage both

DSL B-NTs and other types of CPE, including stand-alone routers and LAN-side client

devices. It is agnostic to the specific access medium utilized by the service provider,

although it does depend on IP-layer connectivity having been established by the device.

Note – in the case of a B-NT, TR-046 [2] describes the overall framework for B-NT auto-

configuration, and TR-062 [3] and TR-044 [4] define the ATM layer and IP layer auto-

configuration procedures. Other types of broadband CPE should make use of the protocols

appropriate to their network architectures in order to obtain IP connectivity.

Note – where the CPE WAN Management Protocol is used to manage both a B-NT (or other

Internet Gateway Device), and a LAN-side client device operating behind that B-NT (or other

Internet Gateway Device), Annex F defines a mechanism to allow the ACS to associate the two so

that they may be managed together.

Note – CPE Implementations might exist where the CPE WAN Management Protocol contains

more than one CWMP Endpoint. Proxy management via the Virtual CWMP Device Mechanism is

one such case.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 17 of 190

Figure 1 – Positioning in the End-to-End Architecture

OSS/BSS

Call

Center

Policy

Auto-Configuration

Server (ACS)

Managed Internet

Gateway Device

Managed LAN

Device

Managed LAN

Device

Managed LAN

Device

Scope of CPE WAN Management

Protocol (CWMP):

ACS Southbound Interface

ACS Northbound Interface

OSS/BSS

Call

Center

Policy

Auto-Configuration

Server (ACS)

Managed Internet

Gateway Device

Managed LAN

Device

Managed LAN

Device

Managed LAN

Device

Scope of CPE WAN Management

Protocol (CWMP):

ACS Southbound Interface

ACS Northbound Interface

1.3 Security Goals

The CPE WAN Management Protocol is designed to provide a high degree of security.

The security model is also designed to be scalable. It is intended to allow basic security

to accommodate less robust CPE implementations, while allowing greater security for

those that can support more advanced security mechanisms. In general terms, the

security goals of the CPE WAN Management Protocol are as follows:

 Prevent tampering with the management functions of a CPE or ACS, or the

transactions that take place between a CPE and ACS.

 Provide confidentiality for the transactions that take place between a CPE and ACS.

 Allow appropriate authentication for each type of transaction.

 Prevent theft of service.

1.4 Architectural Goals

The protocol is intended to provide flexibility in the connectivity model. The protocol is

intended to provide the following:

 Allow both CPE and ACS initiated connection establishment, avoiding the need for a

persistent connection to be maintained between each CPE and an ACS.

 The functional interactions between the ACS and CPE should be independent of

which end initiated the establishment of the connection. In particular, even where

ACS initiated connectivity is not supported, all ACS initiated transactions should be

able to take place over a connection initiated by the CPE.

 Allow one or more ACSs to serve a population of CPE, which may be associated with

one or more service providers.

The protocol is intended to support discovery and association of ACS and CPE:

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 18 of 190

 Provide mechanisms for a CPE to discover the appropriate ACS for a given service

provider.

 Provide mechanisms to allow an ACS to securely identify a CPE and associate it with

a user/customer. Processes to support such association should support models that

incorporate user interaction as well as those that are fully automatic.

The protocol is intended to allow an ACS access to control and monitor various

Parameters associated with a CPE. The mechanisms provided to access these Parameters

are designed with the following premises:

 Different CPE may have differing capability levels, implementing different subsets of

optional functionality. Additionally, an ACS may manage a range of different device

types delivering a range of different services. As a result, an ACS must be able to

discover the capabilities of a particular CPE.

 An ACS must be able to control and monitor the current configuration of a CPE.

 Other control entities besides an ACS may be able to control some Parameters of a

CPE‘s configuration (e.g., via LAN-side auto-configuration). As a result, the

protocol must allow an ACS to account for external changes to a CPE‘s

configuration. The ACS should also be able to control which configuration

Parameters can be controlled via means other than by the ACS.

 The protocol should allow vendor-specific Parameters to be defined and accessed.

The protocol is intended to minimize implementation complexity, while providing

flexibility in trading off complexity vs. functionality. The protocol incorporates a

number of optional components that come into play only if specific functionality is

required. The protocol also incorporates existing standards where appropriate, allowing

leverage of off-the-shelf implementations.

The protocol is intended to be agnostic to the underlying access network.

The protocol is also designed to be extensible. It includes mechanisms to support future

extensions to the standard, as well as explicit mechanisms for vendor-specific extensions.

1.5 Assumptions

Some assumptions made in defining the CPE WAN Management Protocol are listed

below:

 All CPE regardless of type (bridge
1
, router, or other) obtain an IP address in order to

communicate with an ACS.

 A CWMP Endpoint can interact with a single ACS at a time. At any time, a CWMP

Endpoint is aware of exactly one ACS with which it can connect. (Note: a collection

of ACSs behind a load balancer is considered a single ACS for the purposes of this

document.)

1 In the case of a bridge, the CPE must establish IP-layer connectivity specifically for management communication.

The mechanism used to establish this connectivity would depend on the specific network architecture. For

example, a DSL bridge may connect using IPoE with DHCP for address allocation, or may connect using PPPoE.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 19 of 190

1.6 Terminology

The following terminology is used throughout the series of documents defining the CPE

WAN Management Protocol.

ACS Auto-Configuration Server. This is a component in the broadband

network responsible for auto-configuration of the CPE for advanced

services.

Action An explicitly triggered transition in the Software Module state model;

e.g. Install, Update, Uninstall, Start, Stop, etc. (see Appendix II/TR-157

[29])

Applied A change to the CPE‘s configuration has been Applied when the CPE

has stopped using the previous configuration and begun using the new

configuration.

B-NT Broadband-Network Termination. A specific type of Broadband CPE

used in DSL networks.

Committed A change to the CPE‘s configuration has been Committed when the

change has been fully validated, the new configuration appears in the

configuration Data Model for subsequent ACS operations to act on, and

the change will definitely be Applied in the future, as required by the

protocol specification.

CPE Customer Premises Equipment; refers to a TR-069-compliant device and

therefore covers both Internet Gateway Devices and LAN-side end

devices. A CPE contains at least one CWMP Endpoint.

CPE Proxier A CPE that is capable of proxying operations between an ACS and a

non-CWMP enabled device (i.e. a Proxied Device). There are two

strategies for proxy management: Virtual CWMP Device Mechanism and

Embedded Object Mechanism.

CWMP CPE WAN Management Protocol (the subject of this standard).

CWMP

Endpoint

A CWMP termination point used by a CPE for Session communication

with the ACS. This term is used interchangeably with CPE unless

specifically defining behavior where a CPE supports multiple CWMP

Endpoints

Data Model A hierarchical set of Parameters that define the managed Objects

accessible via TR-069 for a particular Device or service.

Deployment

Unit

An entity that can be individually deployed on the Execution

Environment. A Deployment Unit can consist of functional Execution

Units and/or configuration files and/or other resources.

Device Used interchangeably with CPE.

DT Instance Device Type Schema instance document. This is an XML document that

conforms to the DT Schema and to any additional rules specified in or

referenced by the DT Schema.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 20 of 190

DT Schema Device Type Schema. This is the XML Schema that is used for

describing a Device‘s supported data model (see Annex B/TR-106 [13]).

Embedded

Object

Mechanism

A proxy management strategy where the CPE Proxier embeds the details

of the Proxied Device within the Data Model. The Proxied Device will

appear to be integrated into the CPE Proxier.

Event An indication that something of interest has happened that requires the

CPE to notify the ACS.

Execution

Environment

A software platform that enables the dynamic loading and unloading of

Software Modules. Typical examples include Linux, OSGi, .NET, and

Java ME. Some Execution Environments enable the sharing of resources

amongst modules.

Execution

Unit

A functional entity that, once started, initiates processes to perform tasks

or provide services, until it is stopped. Execution Units are deployed by

Deployment Units. The following list of concepts could be considered an

Execution Unit: services, scripts, software components, libraries, etc.

Forced

Inform

Parameter

A Parameter whose definition requires it to be included with every

Inform RPC.

Instance

Alias

A writeable string that uniquely identifies an instance within a Multi-

Instance Object.

Instance

Identifier

A value that uniquely identifies an instance within a Multi-Instance

Object. It is either an Instance Number or an Instance Alias.

Instance

Number

A read-only positive integer (>=1) that uniquely identifies an instance

within a Multi-Instance Object.

Internet

Gateway

Device

A CPE device, typically a broadband router, that acts as a gateway

between the WAN and the LAN.

Multi-

Instance

Object

An Object that can have multiple instances, all of which have the same

structure and are located at the same level within the name hierarchy.

Each instance is identified by an Instance Identifier.

Object An internal node in the name hierarchy, i.e., a node that can have Object

or Parameter children. An Object name is a Path Name.

Parameter A name-value pair that represents part of a CPE‘s configuration or status.

A Parameter name is a Path Name.

Path Name A name that has a hierarchical structure similar to files in a directory,

with each level separated by a ―.‖ (dot). References an Object or a

Parameter.

Partial Path

Name

A Path Name that ends with a ―.‖ (dot). References an Object and

represents a subset of the name hierarchy.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 21 of 190

Proxied

Device

A CPE that is not capable of communicating via CWMP, but

communicates indirectly with an ACS via a CPE Proxier.

RPC Remote Procedure Call.

Session A contiguous sequence of CWMP Transactions between a CWMP

Endpoint and an ACS. Note that a Session may span multiple TCP

connections.

Software

Module

The common term for all software (other than firmware) that will be

installed on an Execution Environment, including the concepts of

Deployment Units and Execution Units.

STB Set Top Box. This CPE contains Audio and Video decoders and is

intended to be connected to Analog TV and / or Home Theaters.

Transaction A message exchange between a CWMP Endpoint and an ACS consisting

of a single request followed by a single response, initiated either by the

CPE or ACS.

Transaction

Session

The same as a Session. The ―Transaction‖ qualifier is sometimes used

for emphasis.

Virtual

CWMP

Device

Mechanism

A proxy management strategy where the CPE Proxier creates a virtual

CWMP environment for the Proxied Device. The CPE Proxier provides

a separate CWMP Endpoint for each such Proxied Device, which will

therefore appear and be managed like a standalone CWMP enabled CPE.

VoIP

Endpoint

A Voice over IP CPE that acts as the initiation/termination point for

VoIP calls. Examples of Endpoints include VoIP phones and analog

terminal adapters (ATAs).

1.7 Abbreviations

This Technical Report defines the following abbreviations:

ACL Access control list

ACS Auto-Configuration Server

ADSL Asymmetric Digital Subscriber Line

AES Advanced Encryption Standard

ASCII American Standard Code for Information Interchange

ATA Analog terminal adapter

ATM Asynchronous Transfer Mode

BOOTP Boot Strap Protocol

CGI Common Gateway Interface

CN Common Name

CPE Customer Premise Equipment

CSRF Cross-site request forgery

CWMP CPE WAN Management Protocol

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DSL Digital Subscriber Line

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 22 of 190

DSM-CC Digital storage media command and control

DT Device Type

DU Deployment Unit

EE Execution Environment

EU Execution Unit

FLUTE File Delivery over Unidirectional Transport

FTP File transfer Protocol

HMAC Hash-based Message Authentication Code

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol over Secure Socket Layer

IANA Internet Assigned Numbers Authority

ID Identifier

IP Internet Protocol

IPv6 Internet Protocol version 6

ISO International Organization for Standardization

LAN Local Area Network

LSB Least significant bit

MD5 Message-Digest algorithm 5

NAT Network Address Translation

NTP Network Time Protocol

NT Network Termination

OSGi OSGi Alliance (former Open Services Gateway initiative)

OUI Organizationally Unique Identifier

PKCS Public Key Cryptography Standards

QoS Quality of Service

RFC Request for Proposal

RPC Remote Procedure Call

RSA Rivest, Shamir and Adleman (crypto system)

SFTP SSH File Transfer Protocol

SHA1 Secure Hash Algorithm 1

SNMP Simple Network Management Protocol

SNTP Simple Network Time Protocol

SOAP Simple Object Access Protocol

SSH Secure Shell

SSL Secure Socket Layer

STB Set Top Box

STUN Session Traversal Utilities for NAT

TCP Transmission Control Protocol

TFTP Tiny File transfer Protocol

TLS Transport Layer Security

TLV Type length value

TR Technical Report

TTL Time to Live

TV Television

UDP User Datagram Protocol

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 23 of 190

UPnP Universal Plug and Play

UPnP DM Universal Plug and Play Device Management

URI Uniform Resource Identifier

URL Universal Resource Locator

URN Uniform Resource Name

UTC Coordinated Universal Time

UTF Universal Multiple-Octet Coded Character Set Transformation Format

UUID Universally Unique Identifier

VoIP Voice over Internet Protocol

WAN Wide Area Network

XML Extensible Markup Language

XSD XML Schema

XSS Cross-Site Scripting

1.8 Document Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in

this document are to be interpreted as described in [1].

The key word ―DEPRECATED‖ refers to a protocol feature, e.g. an RPC Method or

Event Type, that is defined and valid in the current version of the standard but is not

strictly necessary, e.g. because another more powerful feature has been defined. Such

features SHOULD NOT be used; they might be removed from the next major version of

the protocol.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 24 of 190

2 Architecture

2.1 Protocol Components

The CPE WAN Management Protocol comprises several components that are unique to

this protocol, and makes use of several standard protocols. The protocol stack defined by

the CPE WAN Management Protocol is shown in Figure 2. A brief description of each

layer is provided in Table 1. Note that the CPE and ACS must adhere to the requirements

of the underlying standard protocols unless otherwise specified.

Figure 2 – Protocol stack

CPE/ACS Management Application

RPC Methods

SOAP

HTTP

SSL/TLS

TCP/IP

Table 1 – Protocol layer summary

Layer Description

CPE/ACS Application The application uses the CPE WAN Management Protocol on the CPE and ACS,
respectively. The application is locally defined and not specified as part of the CPE
WAN Management Protocol.

RPC Methods The specific RPC methods that are defined by the CPE WAN Management Protocol.
These methods are specified in Annex A.

SOAP A standard XML-based syntax used here to encode remote procedure calls. Specifically
SOAP 1.1, as specified in [9].

HTTP HTTP 1.1, as specified in [6].

TLS The standard Internet transport layer security protocol. Specifically, TLS 1.2 (Transport
Layer Security) as defined in [11] (or a later version). Note that previous versions of this
specification referenced SSL 3.0 and TLS 1.0.

TCP/IP Standard TCP/IP.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 25 of 190

2.2 Security Mechanisms

The CPE WAN Management Protocol is designed to allow a high degree of security in

the interactions that use it. The CPE WAN Management Protocol is designed to prevent

tampering with the transactions that take place between a CPE and ACS, provide

confidentiality for these transactions, and allow various levels of authentication.

The following security mechanisms are incorporated in this protocol:

 The protocol supports the use of TLS for communications transport between CPE and

ACS. This provides transaction confidentiality, data integrity, and allows certificate-

based authentication between the CPE and ACS.

 The HTTP layer provides an alternative means of CPE and ACS authentication based

on shared secrets. Note that the protocol does not specify how the shared secrets are

learned by the CPE and ACS.

2.3 Architectural Components

2.3.1 Parameters

The RPC Method Specification (see Annex A) defines a generic mechanism by which an

ACS can read or write Parameters to configure a CPE and monitor CPE status and

statistics. Parameters for various classes of CPE are defined in separate documents. At

the time of writing the following standards define TR-069 data models.

 TR-098: Internet Gateway Device Data Model for TR-069 [24]

 TR-104: Provisioning Parameters for VoIP CPE [25]

 TR-135: Data Model for a TR-069 Enabled STB [26]

 TR-140: TR-069 Data Model for Storage Service Enabled Devices [27]

 TR-143: Enabling Network Throughput Performance Tests and Statistical

Monitoring [28]

 TR-157: Component Objects for CWMP [29]

 TR-181: Device Data Model for TR-069 [31] and [32]

 TR-196: Femto Access Point Service Data Model [30]

Each Parameter consists of a name-value pair. The name identifies the particular

Parameter. The value of a Parameter may be one of several defined data types (see TR-

106 [13]).

Parameters may be defined as read-only or read-write. Read-only Parameters may be

used to allow an ACS to determine specific CPE characteristics, observe the current state

of the CPE, or collect statistics. Writeable Parameters allow an ACS to customize

various aspects of the CPE‘s operation. All writeable Parameters must also be readable

although those that contain confidential user information, e.g. passwords, may return

empty values when read (this is specified in the corresponding data model definition).

The value of some writeable Parameters may be independently modifiable through means

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 26 of 190

other than the interface defined in this specification (e.g., some Parameters may also be

modified via a LAN side auto-configuration protocol).

Because other protocols (as well as subscriber action) may independently modify the

device configuration, the ACS cannot assume that it is the only entity modifying device

configuration. Additionally, it is possible that a LAN-side mechanism could alter device

configuration in such a way that it contravenes the intended ACS-supplied configuration.

Care should be taken in the implementation of both WAN and LAN-side auto-

configuration mechanisms, as well as subscriber-facing interfaces, to limit the instances

of such an occurrence.

The protocol supports a discovery mechanism that allows an ACS to determine what

Parameters a particular CPE supports, allowing the definition of optional Parameters as

well as supporting straightforward addition of future standard Parameters.

The protocol also includes an extensibility mechanism that allows use of vendor-specific

Parameters in addition to those defined in this specification.

2.3.2 File Transfers

The RPC Method Specification (see Annex A) defines mechanisms to facilitate file

transfers for a variety of purposes, such as downloading firmware upgrades or vendor-

specific configuration files, (optionally) installing or updating software modules, and

(optionally) uploading configuration or log files from the device.

File transfers can be performed by means of Unicast or (for downloads) Multicast

transport protocols. Unicast protocols include HTTP/HTTPS, FTP, SFTP and TFTP.

Multicast protocols include FLUTE and DSM-CC. Support for HTTP/HTTPS is

mandatory, and protocols other than those listed here can be supported.

When a file transfer is initiated by the ACS via any of the method calls that can cause a

file transfer, the CPE is provided with the location of the file (or possibly files in the case

of a software module installation or update) to be transferred, or details of the Multicast

group to join (for Multicast downloads). The CPE then performs the transfer(s), and

notifies the ACS of success or failure.

Downloads may be optionally initiated by a CPE. In this case, the CPE first requests a

download of a particular file type from the ACS. The ACS may then respond by

initiating the download following the same steps as an ACS-initiated download.

File transfers may also be optionally initiated by an external event, e.g. a Multicast

firmware availability announcement or user-initiated software module updates. In this

case, the CPE performs the transfer autonomously, and notifies the ACS of the success or

failure.

2.3.3 CPE Initiated Sessions

The RPC Method Specification (see Annex A) defines a mechanism that allows a CPE to

inform a corresponding ACS of various conditions, and to ensure that CPE-to-ACS

communication will occur with some minimum frequency.

This includes mechanisms to establish communication upon initial CPE installation in

order to ‗bootstrap‘ initial customized Parameters into the CPE. It also includes a

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 27 of 190

mechanism to establish periodic communication with the ACS on an ongoing basis, or

when events occur that must be reported to the ACS (such as when the broadband IP

address of the CPE changes).

In each case, when communication is established the CPE identifies itself uniquely via

manufacturer and serial number information (and optional product class identifier) so that

the ACS knows which CPE it is communicating with and can respond in an appropriate

way.

2.3.4 Asynchronous ACS Initiated Sessions

An important aspect of service auto-configuration is the ability for the ACS to inform the

CPE of a configuration change asynchronously. This allows the auto-configuration

mechanism to be used for services that require near-real-time reconfiguration of the CPE.

For example, this may be used to provide an end-user with immediate access to a service

or feature they have subscribed to, without waiting for the next periodic contact.

The CPE WAN Management Protocol incorporates a mechanism for the ACS to issue a

Connection Request to the CPE at any time, instructing it to establish a communication

session with the ACS.

While the CPE WAN Management Protocol also allows polling by the CPE in lieu of

ACS-initiated connections, the CPE WAN Management Protocol does not rely on polling

or establishment of persistent connections from the CPE to provide asynchronous

notification.

The basic mechanism defined in the CPE WAN Management Protocol to enable

asynchronous ACS initiated communication assumes direct IP addressability of the CPE

from the ACS. An alternative mechanism is defined in Annex G, which accommodates

CPE operating behind a NAT gateway that are not directly addressable by the ACS.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 28 of 190

3 Procedures and Requirements

This Section, along with the Annexes referenced in this Section, defines the normative

requirements of the CPE WAN Management Protocol.

This Section also references a number of standards and other specifications that form part

of the CPE WAN Management Protocol. Unless otherwise specified, the CPE and ACS

MUST adhere to the requirements of these referenced specifications.

3.1 ACS Discovery

Note - DHCPv4 options 43 (Vendor Specific Information) and 60 (Vendor Class Identifier) are

used rather than the more recent DHCPv4 options 124 (Vendor-Identifying Vendor Class) and

125 (Vendor-Identifying Vendor-Specific Information), which are based on DHCPv6 options 16

(Vendor Class) and 17 (Vendor Specific Information). This is because DHCPv4 options 43 and 60

have been used in all previous versions of this document, and so these options need to continue to

be supported for backwards compatibility. Specifying DHCPv4 options 124 and 125 in addition

would be unnecessarily complicated, since both CPE and ACS would need to continue to support

options 43 and 60.

The CPE WAN Management Protocol defines the following mechanisms that MAY be

used by a CPE to discover the address of its associated ACS:

1. The CPE MAY be configured locally with the URL of the ACS for each CWMP

Endpoint. For example, this MAY be done via a LAN-side CPE auto-configuration

protocol. If necessary, the CPE would use DNS to resolve the IP address of the ACS

from the host name component of the URL.

2. As part of the IP layer auto-configuration, a DHCP server on the access network

MAY be configured to include the ACS URL as a DHCP option [13] / [35]. If

necessary, the CPE would use DNS to resolve the IP address of the ACS from the

host name component of the URL. In this case additional DHCP options MAY be

used to set:

 The ProvisioningCode, which MAY be used to indicate the primary service

provider and other provisioning information to the ACS.

 The CWMPRetryMinimumWaitInterval, which MAY be used to set the initial

value of the CWMP session retry minimum wait interval, as specified in Section

3.2.1.1.

 The CWMPRetryIntervalMultiplier, which MAY be used to set the initial value of

the CWMP session retry interval multiplier, as specified in Section 3.2.1.1.

A CPE identifies itself to the DHCP server as supporting this method by including the

string ―dslforum.org‖ (all lower case) anywhere in the DHCPv4 Vendor Class

Identifier (option 60) or in a DHCPv6 Vendor Class (option 16) vendor-class-data

item.

The CPE MAY use the values received from the DHCP server in the Vendor Specific

Information (DHCPv4 option 43 / DHCPv6 option 17) to set the corresponding

Parameters as listed in Table 2. This DHCP option is encoded as a list of one or more

Encapsulated Vendor-Specific Options in the format defined in [14] / [35]. This list

MAY include other vendor-specific options in addition to those listed here.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 29 of 190

If the CPE obtained an ACS URL through DHCP and it cannot reach the ACS, the

CPE MUST use DHCP to re-discover the ACS URL. The CPE MUST consider the

ACS unreachable if it cannot establish a TCP connection to it for 300 seconds at each

of the IP addresses to which the ACS URL resolves. If the CPE does not receive a

DHCP reply, it MUST attempt to retry according to [20] / [35].

When the CPE needs to contact the ACS, it MUST use the DHCP discovery

mechanism in the following scenarios:

 If the CPE has an empty value for the ManagementServer.URL Parameter, or

 If the CPE is unable to contact the ACS and the CPE originally (the first

successful time after the most recent factory reset) obtained its ACS URL through

DHCP.

This behavior enables the CPE to go back to the use of DHCP for finding the ACS if

an ACS URL had not been pre-configured in the CPE. For example, this can handle

the situation of setting an incorrect ACS URL on the CPE. This behavior is not

meant as an ACS failover mechanism.

The CPE MUST remember the mechanism it used to locate the ACS after each

factory reset. If the CPE did not use DHCP to discover the ACS URL, then it

SHOULD NOT fall back to using DHCP for ACS discovery. If the CPE originally

used DHCP for ACS discovery, then when it fails to contact the ACS, it MUST

perform re-discovery via DHCP. The last requirement holds even if the ACS URL

has been subsequently set through a non-DHCP mechanism.

Table 2 – Encapsulated Vendor Specific Options

Encapsulated
Option

Encapsulated Vendor-
Specific Option number

Parameter
2

URL of the ACS 1 ManagementServer.URL

Provisioning code 2 DeviceInfo.ProvisioningCode

CWMP retry mini-
mum wait interval

3 ManagementServer.CWMPRetryMinimumWait-
Interval

CWMP retry interval
multiplier

4 ManagementServer.CWMPRetryIntervalMultiplier

All the encapsulated option values MUST be represented as strings and MUST be

valid values for their corresponding Parameters. The specified URL MUST be an

absolute URL. The encapsulated option values MUST NOT be null terminated. If

the CPE receives an encapsulated option value that is null terminated, the CPE MUST

accept the value provided, and MUST NOT interpret the null character as part of the

value.

3. The CPE MAY have a default ACS URL that it MAY use if no other URL is

provided to it.

2 As defined in [24], [31], and [32].

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 30 of 190

The ACS URL MUST be in the form of a valid HTTP or HTTPS URL [6]. Use of an

HTTPS URL indicates that the CPE MUST establish an SSL or TLS connection to the

ACS.

Once the CPE has established a connection to the ACS via a CWMP Endpoint, the ACS

MAY at any time modify the ACS URL Parameter stored within the CPE (Management-

Server.URL, as defined in [24], [31], and [32]). Once modified, the CPE MUST use the

modified URL for all subsequent connections to the ACS.

The ―host‖ portion of the ACS URL is used by the CPE for validating the certificate from

the ACS when using certificate-based authentication. Because this relies on the accuracy

of the ACS URL, the overall security of this protocol is dependent on the security of the

ACS URL.

The CPE SHOULD restrict the ability to locally configure the ACS URL to mechanisms

that require strict security. The CPE MAY further restrict the ability to locally set the

ACS URL to initial setup only, preventing further local configuration once the initial

connection to an ACS has successfully been established such that only its existing ACS is

permitted subsequently to change this URL.

The use of DHCP for configuration of the ACS URL SHOULD be limited to situations in

which the security of the link between the DHCP server and the CPE can be assured by

the service provider. Since DHCP does not itself incorporate a security mechanism, other

means of ensuring this security SHOULD be provided.

The ACS URL MAY contain a DNS hostname or an IP address. When resolving the

ACS hostname, the DNS server might return multiple IP addresses. In this case, the CPE

SHOULD randomly choose an IP address from the list. When the CPE is unable to reach

the ACS, it SHOULD randomly select a different IP address from the list and attempt to

contact the ACS at the new IP address. This behavior ensures that CPEs will balance

their requests between different ACSs if multiple IP addresses represent different ACSs.

The CPE MUST NOT cache the DNS server response beyond the duration of time to live

(TTL) returned by DNS server unless it cannot contact the DNS server for an update.

This behavior is required by DNS RFC 1034 [5] and provides an opportunity for the DNS

server to update stale data.

It is further RECOMMENDED that the CPE implements affinity to a particular ACS IP

address. Affinity to a given IP address means that the CPE will attempt to use the same

IP address for as long as it can contact the ACS at this address. This creates a more

stable system and can allow the ACS to perform better due to better caching. To

implement the affinity the CPE SHOULD store to persistent storage the last successfully

used IP address and the list of IP addresses from which it was selected. The CPE

SHOULD continue to perform DNS queries as normal, but SHOULD continue using the

same IP address for as long as it can contact the ACS and for as long as the list of IP

addresses returned by the DNS does not change. The CPE SHOULD select a new IP

address whenever the list of IP addresses changes or when it cannot contact the ACS.

This provides an opportunity for service providers to reconfigure their network.

Port 7547 has been assigned by IANA for the CPE WAN Management Protocol (see

[17]), and the ACS MAY use this port in its URL.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 31 of 190

3.2 Connection Establishment

3.2.1 CPE Connection Initiation

The CPE MAY at any time initiate a connection to the ACS via a CWMP Endpoint using

the pre-determined ACS address (see Section 3.1). A CPE MUST establish a connection

to the ACS and issue the Inform RPC method (following the procedures described in

Section 3.6.1) under the following conditions:

 The first time the CPE establishes a connection to the access network on initial

installation

 On power-up or reset

 Once every ManagementServer.PeriodicInformInterval (for example, every 24

hours)

 When so instructed by the optional ScheduleInform method

 Whenever the CPE receives a valid Connection Request from an ACS (see

Section 3.2.1.2)

 Whenever the URL of the ACS changes

 Whenever a Parameter is modified that is required to initiate an Inform on change.

 Whenever the value of a Parameter that the ACS has marked for ―active

notification‖ via the SetParameterAttributes method is modified by an external

cause (a cause other than the ACS itself). Parameter changes made by the ACS

itself via SetParameterValues MUST NOT cause a new session to be initiated. If

a Parameter is modified more than once before the CPE is able to initiate a session

to perform the notification, the CPE MUST perform only one notification.

If a Parameter is modified by an external cause while a session is in progress, the

change causes a new session to be established after the current session is

terminated (it MUST NOT affect the current session).

In order to avoid excessive traffic to the ACS, a CPE MAY place a locally

specified limit on the frequency of Parameter change notifications. This limit

SHOULD be defined so that it is exceeded only in unusual circumstances. If this

limit is exceeded, the CPE MAY delay by a locally specified amount initiation of

a session to notify the ACS. After this delay, the CPE MUST initiate a session to

the ACS and indicate all relevant Parameter changes (those Parameters that have

been marked for notification) that have occurred since the last such notification.

 Whenever a download or upload completes (either successfully or

unsuccessfully), provided that CPE policy indicates that the ACS needs to be

notified of the download or upload completion.

The ACS MUST always be notified of the completion of downloads or uploads

that were specifically requested by the ACS.

CPE policy MUST determine whether to notify the ACS of the completion of

downloads or uploads that were not specifically requested by the ACS.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 32 of 190

Note – this CPE policy is remotely configurable via the parameters defined within

the ManagementServer.AutonomousTransferCompletePolicy object. For

example, the CPE might be configured to notify the ACS only if a download or

upload (not requested by the ACS) was not completed successfully.

 Whenever an unsuccessfully terminated session is retried according to the session

retry policy specified in Section 3.2.1.1.

The CPE MUST NOT maintain an open connection to the ACS when no more

outstanding messages exist on the CPE or ACS. Refer to Section 3.7.1.4 for details of

CPE session termination criteria.

3.2.1.1 Session Retry Policy

A CPE MUST retry failed sessions to attempt to redeliver events that it has previously

failed to deliver and to allow the ACS to make additional requests in a timely fashion.

Section 3.7.1.5 details the rules for successful event delivery, for retrying event delivery,

and for discarding events after failing to deliver them. The CPE MUST keep track of the

number of times it has attempted to retry a failed session.

If the CPE fails to establish a session, this might be because the CPE supports CPE WAN

Management Protocol v1.1 (or later) and the ACS supports only v1.0. If this situation is

suspected (see Section 3.7.2.1), the CPE MUST revert to v1.0 when retrying the failed

session.

A CPE MUST retry a failed session after waiting for an interval of time specified in

Table 3 or when a new event occurs, whichever comes first. The CPE MUST choose the

wait interval by randomly selecting a number of seconds from a range given by the post-

reboot session retry count. When retrying a failed session after an intervening reboot, the

CPE MUST reset the wait intervals it chooses from as though it were making its first

session retry attempt. In other words, if a session is retried when a new event other than

BOOT occurs, it does not reset the wait interval, although the continued occurrence of

new events might cause sessions to be initiated more frequently than shown in the table.

Regardless of the reason a previous session failed or the condition prompting session

retry, the CPE MUST communicate to the ACS the session retry count.

The wait interval range is controlled by two Parameters, the minimum wait interval and

the interval multiplier, each of which corresponds to a data model Parameter, and which

are described in the table below.

Descriptive Name Symbol
3
 Default

4
 Data Model Parameter Name

Minimum wait interval m 5 seconds ManagementServer.CWMPRetryMinimumWaitInterval

Interval multiplier k 2000 ManagementServer.CWMPRetryIntervalMultiplier

The factory default values of these Parameters MUST be the values that were hard-coded

in previous versions of the CPE WAN Management Protocol, i.e. the values from the

Default column. These values MAY be overridden by values obtained via DHCP, as

explained in Section 3.1. They MAY also be changed by the ACS at any time.

3 These symbols are used in Table 3.
4 These are the values that were hard-coded in previous versions of the CPE WAN Management Protocol.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 33 of 190

Beginning with the tenth post-reboot session retry attempt, the CPE MUST choose from

the fixed maximum range shown in Table 3. The CPE MUST continue to retry a failed

session until it is successfully terminated or until the rules defined in the ―Retry/Discard

Policy‖ column within Table 7 take precedence. Once a session terminates successfully,

the CPE MUST reset the session retry count to zero and no longer apply session retry

policy to determine when to initiate the next session.

Table 3 – Session Retry Wait Intervals

Post Reboot
Session Retry
Count

Default Wait Interval Range
(min-max seconds)

Actual Wait Interval Range
(min-max seconds)

#1 5-10 m – m.(k/1000)

#2 10-20 m.(k/1000) – m.(k/1000)
2

#3 20-40 m.(k/1000)
2
 – m.(k/1000)

3

#4 40-80 m.(k/1000)
3
 – m.(k/1000)

4

#5 80-160 m.(k/1000)
4
 – m.(k/1000)

5

#6 160-320 m.(k/1000)
5
 – m.(k/1000)

6

#7 320-640 m.(k/1000)
6
 – m.(k/1000)

7

#8 640-1280 m.(k/1000)
7
 – m.(k/1000)

8

#9 1280-2560 m.(k/1000)
8
 – m.(k/1000)

9

#10 and subsequent 2560-5120 m.(k/1000)
9
 – m.(k/1000)

10

3.2.1.2 Use of random source port

Each time the CPE first connects to the ACS after rebooting, it SHOULD use a different

ephemeral TCP source port in order to avoid the possibility of reusing the same port that

it used last time. Reuse of the same port could cause the ACS to reject the connection if

the elapsed time since the previous connection is less than the ACS‘s configured TCP

TIME_WAIT value.

In order to minimize the probability that the same ephemeral port number is used on

successive occasions, the port SHOULD be selected using a strong randomization

mechanism.

3.2.2 ACS Connection Initiation

The ACS MAY at any time request that a CWMP Endpoint initiate a connection to the

ACS using the Connection Request mechanism. Support for this mechanism is

REQUIRED in a CPE, and is RECOMMENDED in an ACS.

This mechanism relies on the CPE having an IP address that is routable from the ACS. If

the CPE is behind a firewall or if there is a NAT device between the ACS and CPE, the

ACS might not be able to access the CPE at all. Annex G defines a mechanism that

allows an ACS to contact a CPE connected via a NAT device.

The Connection Request mechanism is defined as follows:

 The Connection Request MUST use an HTTP 1.1 GET to a specific URL designated

by the CPE. The URL value is available as read-only Parameter on the CPE. The

path of this URL value SHOULD be randomly generated by the CPE so that it is

unique per CPE.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 34 of 190

 The Connection Request MUST make use of HTTP, not HTTPS. The associated

URL MUST be an HTTP URL.

 No data is conveyed in the Connection Request HTTP GET. Any data that might be

contained SHOULD be ignored by the CPE.

 The CPE MUST use HTTP digest authentication [7] to authenticate the ACS before

proceeding—the CPE MUST NOT initiate a connection to the ACS due to an

unsuccessfully authenticated request.

 The CPE MUST accept Connection Requests from any source that has the correct

authentication parameters for the target CPE.

 The CPE‘s response to a successfully authenticated Connection Request MUST use

either a ―200 (OK)‖ or a ―204 (No Content)‖ HTTP status code. The CPE MUST

send this response immediately upon successful authentication, prior to it initiating

the resulting Session. The length of the message-body in the HTTP response MUST

be zero.

 The CPE SHOULD restrict the number of Connection Requests for a particular

CWMP Endpoint that it accepts during a given period of time in order to further

reduce the possibility of a denial of service attack. If the CPE chooses to reject a

Connection Request for this reason, the CPE MUST respond to that Connection

Request with an HTTP 503 status code (Service Unavailable). In this case, the CPE

SHOULD NOT include the HTTP Retry-After header in the response.

 If the CPE successfully authenticates and responds to a Connection Request for a

particular CWMP Endpoint as described above, and if it is not already in a Session

for the requested CWMP Endpoint, then it MUST, within 30 seconds of sending the

response, attempt to establish a Session with the pre-determined ACS address (see

Section 3.1) in which it includes the ―6 CONNECTION REQUEST‖ EventCode in

the Inform.

Note – in practice there might be exceptional circumstances that would cause a CPE to fail to

meet this requirement on rare occasions.

 If the ACS receives a successful response to a Connection Request but after at least

30 seconds the CPE has not successfully established a Session that includes the ―6

CONNECTION REQUEST‖ EventCode in the Inform, the ACS MAY retry the

Connection Request to that CPE.

 If, once the CPE successfully authenticates and responds to a Connection Request,

but before it establishes a Session to the ACS, it receives one or more successfully

authenticated Connection Requests for the same CWMP Endpoint, the CPE MUST

return a successful response for each of those Connection Requests, but MUST NOT

initiate any additional Sessions for the same CWMP Endpoint as a result of these

additional Connection Requests, regardless of how many it receives during this time.

 If the CPE is already in a Session with the ACS with at least one CWMP Endpoint

when it receives one or more Connection Requests, it MUST NOT terminate any

Session against any CWMP Endpoint prematurely as a result. The CPE MUST

instead take one of the following alternative actions:

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 35 of 190

 Reject each Connection Request by responding with an HTTP 503 status code

(Service Unavailable). In this case, the CPE SHOULD NOT include the HTTP

Retry-After header in the response.

 Following the completion of the CWMP Endpoint‘s current Session, initiate

exactly one new Session at a time (regardless of how many Connection Requests

had been received during the previous Session) in which it includes the

―6 CONNECTION REQUEST‖ EventCode in the Inform. The Connection

Requests that are not accepted MUST be rejected (with an HTTP 503 status

code). If the new Session is for the CWMP Endpoint currently in Session, the

CPE MUST initiate the Session immediately after the existing Session is complete

and all changes from that Session have been applied.

 If the Connection Request is not for any CWMP Endpoint currently in Session,

the CPE MAY initiate a new Session with the requested CWMP Endpoint while

the existing Session is still active.

This requirement holds for Connection Requests received any time during the interval

that the CPE considers itself in a Session with at least one CWMP Endpoint,

including the period in which the CPE is in the process of establishing the Session.

 The CPE MUST NOT reject a properly authenticated Connection Request for any

reason other than those described above. If the CPE rejects a Connection Request for

any of the reasons described above, it MUST NOT initiate a Session with the ACS as

a result of that Connection Request.

This mechanism relies on the ACS having had at least one prior communication with the

CWMP Endpoint in a CPE-initiated interaction. During this interaction, if the ACS

wishes to allow future ACS-initiated transactions, it would use the value of the

ManagementServer.ConnectionRequestURL Parameter (see [24], [31] , and [32]). If the

URL used for management access changes, the CPE MUST notify the ACS by issuing an

Inform message indicating the new management IP address (see [24], [31] , and [32]),

thus keeping the ACS up-to-date.

Port 7547 has been assigned by IANA for the CPE WAN Management Protocol (see

[17]), and the CPE MAY use this port in the Connection Request URL.

3.3 Use of TLS and TCP

Note – previous versions of this specification referenced SSL 3.0 and TLS 1.0.

These are no longer mentioned in the text below, and SHOULD NOT be used.

The use of TLS to transport the CPE WAN Management Protocol is RECOMMENDED,

although the protocol MAY be used directly over a TCP connection instead. If TLS is

not used, some aspects of security are sacrificed. Specifically, TLS provides

confidentiality and data integrity, and allows certificate-based authentication in lieu of

shared secret-based authentication.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 36 of 190

Certain restrictions on the use of TLS and TCP are defined as follows:

 The CPE SHOULD support TLS 1.2 [11] (or a later version).

 The CPE SHOULD communicate its capabilities to the ACS as specified in Appendix

E of RFC 5246 [11], allowing the ACS to choose the protocol.

 If the ACS URL has been specified as an HTTPS URL, the CPE MUST establish

secure connections to the ACS, and SHOULD use TLS 1.2 (or, if supported, a later

version).

Note – if the ACS does not support the version with which the CPE establishes the

connection, it might be necessary to negotiate an earlier TLS 1.x version, or even

SSL 3.0. This implies that the CPE has to support the mandatory cipher suites for

all supported TLS or SSL versions.

Note – TLS_RSA_WITH_AES_128_CBC_SHA is the only mandatory TLS 1.2

cipher suite.

 RC4-based cipher suites MUST NOT be used with TLS 1.2.

 A CPE MUST be able to initiate outgoing connections to the ACS.

 An ACS MUST be able to accept CPE-initiated connections.

 If TLS 1.2 (or a later version) is used, the CPE MUST authenticate the ACS using the

ACS-provided certificate. Authentication of the ACS requires that the CPE MUST

validate the certificate against a root certificate, and that the CPE MUST ensure that

the value of the CN (Common Name) component of the Subject field in the certificate

exactly matches the host portion of the ACS URL known to the CPE (even if the host

portion of the ACS URL is an IP address). This MUST be a direct string comparison

between the CN and the host portion of the ACS URL. If either of these is in the

form of a hostname (rather than an IP address), this comparison MUST NOT involve

the IP address that the hostname resolves to.

To validate against a root certificate, the CPE MUST contain one or more trusted root

certificates that are either pre-loaded in the CPE or provided to the CPE by a secure

means outside the scope of this specification.

If as a result of an HTTP redirect, the CPE is attempting to access an ACS at a URL

different from its pre-configured ACS URL, the CPE MUST validate the CN

component of the ACS certificate against the host portion of the redirected ACS URL

rather than the pre-configured ACS URL.

A CPE SHOULD wait until it has accurate absolute time before contacting the ACS.

If a CPE chooses to contact the ACS before it has accurate absolute time (or if it does

not support absolute time), it MUST ignore those components of the ACS certificate

that involve absolute time, e.g. not-valid-before and not-valid-after certificate

restrictions.

 Support for CPE authentication using client-side certificates is OPTIONAL for both

the CPE and ACS. Such client-side certificates MUST be signed by an appropriate

chain. When client-side certificates are used to authenticate the CPE to the ACS, the

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 37 of 190

Common Name (CN) field in the CPE certificate MUST be one of the following two

types:

 Unique CPE client certificate. In this case, the value of the CN field MUST be

globally unique for each CPE. Specifically, the CN field MUST adhere to the

format recommended for the username/userid in Section 3.4.4.

Examples:

00D09E-0123456789

012345-STB-0123456789

012345-Set%2DTop%2DBox-0123456789

 Generic CPE client certificate. In this case, the value of the CN field MAY be the

same among a set of CPE, such as all CPE of a specific model from a given

vendor. The content of the CN field is not specified in this case.

If generic CPE client certificates are used, the ACS SHOULD additionally

authenticate the CPE using HTTP basic or digest authentication to establish the

identity of a specific CPE.

3.4 Use of HTTP

SOAP messages are carried between a CPE and an ACS using HTTP 1.1 [6], where the

CPE acts as the HTTP client and the ACS acts as the HTTP server.

Note – the CPE WAN Management Protocol also uses HTTP for Connection

Requests, where the ACS acts as the HTTP client and the CPE acts as the HTTP

server. This usage of HTTP is described in Section 3.2.2

3.4.1 Encoding SOAP over HTTP

The encoding of SOAP over HTTP extends the HTTP binding for SOAP, as defined in

Section 6 of [9], as follows:

 A SOAP request from an ACS to a CPE is sent over an HTTP response, while the

CPE‘s SOAP response to an ACS request is sent over a subsequent HTTP POST.

 When there is a SOAP response in an HTTP Request, or when there is a SOAP

Fault response in an HTTP Request, the SOAPAction header in the HTTP

Request MUST have no value (with no quotes), indicating that this header

provides no information as to the intent of the message. That is, it MUST appear

as follows:

SOAPAction:

 When an HTTP Request or Response contains a SOAP Envelope, the HTTP

Content-Type header MUST have a type/subtype of ―text/xml‖.

 An empty HTTP POST MUST NOT contain a SOAPAction header.

 An empty HTTP POST MUST NOT contain a Content-Type header.

 An HTTP response that contains any CPE WAN Management Protocol payload (a

SOAP request to the CPE, a successful SOAP response to the CPE, or a SOAP

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 38 of 190

fault response containing a Fault element defined in Section 3.5) MUST use the

HTTP status code 200 (OK).

Below is an example HTTP Response from an ACS containing a SOAP Request:

HTTP/1.1 200 OK

Content-Type: text/xml; charset="utf-8"

Content-Length: xyz

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:cwmp="urn:dslforum-org:cwmp-1-0">

 <soap:Body>

 <cwmp:Request>

 <argument>value</argument>

 </cwmp:Request>

 </soap:Body>

</soap:Envelope>

Note – in the above example, the XML namespace prefixes used are only examples. The actual

namespace prefix values are arbitrary, and are used only to refer to a namespace declaration.

Note – in the above example, the CWMP namespace identifier ―urn:dslforum-org:cwmp-1-0‖ is

only an example and is not necessarily the version that is defined by this specification.

3.4.2 Transaction Sessions

For a sequence of transactions forming a single session, a CPE SHOULD maintain a TCP

connection that persists throughout the duration of the session. However, if the TCP

connection is cleanly closed after an HTTP request/response round trip, and if the session

has not otherwise terminated (either successfully or unsuccessfully) at the time of the last

HTTP response, the CPE MUST continue the session by sending the next HTTP request

in a new TCP connection.

After receiving an authentication challenge, the CPE MUST send the next HTTP request

(including the "Authorization" HTTP header) in the same TCP connection unless the

ACS specifically requested, via a "Connection: close" HTTP header, that the TCP

connection be closed
5
. In the latter case, the CPE MUST honor the ACS request, close

the TCP connection, and send the next HTTP request (including the "Authorization"

HTTP header) in a new TCP connection.

If the CPE for any reason fails to establish a TCP connection, fails to send an HTTP

message, or fails to receive an HTTP response, the CPE MUST consider the session

unsuccessfully terminated. The CPE MUST wait a minimum of 30 seconds before

declaring a failure to establish a TCP connection, or failure to receive an HTTP response.

The ACS SHOULD make use of a session cookie to maintain session state as described

in [8]. The ACS MAY make use of old-style ―Netscape‖ cookies as well as, or instead

of, the new-style cookies of [8]. The ACS SHOULD use only cookies marked for

Discard, and SHOULD NOT assume that a CPE will maintain a cookie beyond the

duration of the session.

5 This extra requirement is necessary because some ACS implementations might utilize the underlying TCP

connection as a mechanism to detect replay attacks (see the note in Section 3.4.5). Such implementations would

require the response to an authentication challenge to use the same TCP connection as the challenge.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 39 of 190

To ensure that an ACS can make use of a session cookie, a CPE MUST support the use of

cookies as defined in [8] including the return of the cookie value in each subsequent

HTTP POST, with the exception that a CPE need not support storage of cookies beyond

the duration of a session. In particular, because the ACS might send old-style, new-style,

or a mixture of old-style and new-style cookies, the CPE MUST support the compatibility

requirements of Section 9.1 of [8]. The CPE MUST support the use of multiple cookies

by the ACS, and MUST make available at least 512 bytes for storage of cookies.

When a transaction session is completed successfully or terminated unsuccessfully, a

CPE MUST close the associated TCP connection to the ACS and discard all cookies

marked for Discard.

A CPE MUST support the use of HTTP redirection by the ACS. The CPE and ACS

requirements associated with the use of HTTP redirection are as follows:

 A CPE MUST support the 302 (Found) and 307 (Temporary Redirect) HTTP status

codes.

 A CPE MAY also support the 301 (Moved Permanently) HTTP status code for

redirection.

 The CPE MUST allow redirection to occur at any point during a session (including

the Inform response), and the ACS MAY issue a redirect at any point during a

session.

 If the CPE is redirected, it MUST attempt to continue the session using the URL

provided in the HTTP redirect response. Specifically, the CPE MUST re-send the

HTTP POST that resulted in the redirect response to the ACS at the redirected URL,

and the CPE MUST then attempt to proceed with the session exactly as if no

redirection had occurred.

 If the CPE is redirected, the redirected URL MUST apply only to the remainder of the

current session or until a subsequent redirect occurs later in the same session. The

redirected URL MUST NOT be saved by the CPE (i.e. as the value of Management-

Server.URL, as defined in [24], [31] , and [32]) for use in any subsequent session or

any subsequent retries of the session. This requirement MUST hold even if the 301

(Moved Permanently) HTTP status code is used for redirection.

 The CPE MUST allow up to 5 consecutive redirections. If the CPE is redirected

more than 5 times consecutively, it MAY consider the session unsuccessfully

terminated.

 The URL provided in HTTP redirection MAY be an HTTP or HTTPS URL. The

appropriate transport mechanism (TCP or TLS) MUST be used with the new target

regardless of the transport used before redirection.

 If TLS is used for the redirected session, requiring the CPE to authenticate the ACS,

the authentication MUST be based on the redirected URL rather than the pre-

configured ACS URL (see Section 3.3).

 In an HTTP response sent by the ACS containing a redirect status code, the length of

the HTTP message-body MUST be zero. If the CPE receives an HTTP re-direct

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 40 of 190

response with a non-empty message-body, it MUST ignore the content of the

message-body.

 When redirected, the CPE MUST include all cookies associated with the session in

subsequent HTTP requests to the redirected ACS. The CPE MUST consider a

redirect from an ACS to be a ―verifiable transaction‖ as defined in [8], and thus it

MUST send cookies to the redirected ACS without performing domain validation of

each cookie.

3.4.3 File Transfers

If the CPE is instructed to perform a file transfer via a Download, ScheduleDownload,

Upload, or ChangeDUState (Install or Update operations) request from the ACS, and if

the file location is specified as an HTTP URL with the same host name as the ACS, then

the CPE MUST choose one of the following approaches in performing the transfer:

 The CPE MAY send the HTTP GET/PUT over the already established

connection. Once the file has been transferred, the CPE MAY then proceed in

sending additional messages to the ACS while continuing to maintain the

connection (this option is not valid for ScheduleDownload or ChangeDUState

(Install or Update operations)).

 The CPE MAY open a second connection over which to transfer the file, while

maintaining the session to the ACS over which it can continue to send messages.

 The CPE MAY terminate the session to the ACS and then perform the transfer.

If the file location is not an HTTP URL or is not in the same domain as the ACS or

requires use of a different port, then only the latter two options are available to it.

A CPE MUST support the use of TLS as specified in Section 3.3 for establishment of a

separate TCP connection to transfer a file using HTTP. The CPE MUST use TLS when

the file location is specified as an HTTPS URL.

The CPE MUST support both HTTP basic and digest authentication for file transfers.

The specific authentication method is chosen by the file server by virtue of providing a

basic or digest authentication challenge. If authentication is used by the file server, the

ACS MUST specify credentials using the specific RPC method used to initiate the

transfer (i.e., Download, ScheduleDownload, Upload, ChangeDUState (Install or Update

operations)).

3.4.4 Authentication

If the CPE is not authenticated using TLS, the ACS MUST authenticate the CPE using

HTTP. If TLS is being used for encryption, the ACS MAY use either basic or digest

authentication [7]. If TLS is not being used, then the ACS MUST use digest

authentication.

The CPE MUST support both HTTP basic and digest authentication. The ACS chooses

the authentication scheme by virtue of providing a basic or digest authentication

challenge.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 41 of 190

If the CPE has received an authentication challenge from the ACS (either basic or digest),

the CPE SHOULD send an Authorization header in all subsequent HTTP requests for the

duration of the TCP connection. Whether or not the CPE does this, the ACS MAY issue

subsequent authentication challenges at any stage of the session within a single or

multiple TCP connections.

If any form of HTTP authentication is used to authenticate the CPE, the CPE SHOULD

use a username/userid that is globally unique among all CPE manufacturers.

Specifically, the CPE username/userid SHOULD be in one of the following two formats:

<OUI> "-" <ProductClass> "-" <SerialNumber>

<OUI> "-" <SerialNumber>

If a username/userid of the above format is used, the <OUI>, <ProductClass>, and

<SerialNumber> fields MUST match exactly the corresponding Parameters included in

the DeviceIdStruct in the Inform message, as defined in Annex A, except that, in order to

guarantee that the Parameter values can be extracted from the username/userid, any

character in the <ProductClass> and <SerialNumber> that is not either alphanumeric or

an underscore (―_‖) MUST be escaped using URI percent encoding, as defined in RFC

3986 [12].

If a username/userid of the above format is used, the second form MUST be used if and

only if the value of the ProductClass Parameter is empty.

Examples:

012345-0123456789

012345-STB-0123456789

012345-Set%2DTop%2DBox-0123456789

The password used in either form of HTTP authentication SHOULD be a unique value

for each CPE. That is, multiple CPE SHOULD NOT share the same password. This

password is a shared secret, and thus MUST be known by both CPE and ACS. The

method by which a shared secret becomes known to both entities on initial CPE

installation is outside the scope of this specification. Both CPE and ACS SHOULD take

appropriate steps to prevent unauthorized access to the password, or list of passwords in

the case of an ACS.

3.4.5 Digest Authentication

This Section outlines requirements for use of digest authentication within the CPE WAN

Management Protocol. These requirements apply to authentication of connections for

RPC exchanges as well as for file transfers. Note that ACS and CPE play the role of

HTTP client and server interchangeably for different types of connections. The ACS

plays the role of the HTTP client when making connection requests. The CPE plays the

role of the HTTP client when initiating connections to the ACS.

The CPE and the ACS MUST support the RFC 2617 ―qop‖ option containing the value

―auth‖. According to RFC 2617, this means that the HTTP client MUST use a new style

digest mechanism when this option is provided to it by the HTTP server.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 42 of 190

When using digest authentication, for each new TCP connection opened, the ACS

SHOULD use a new nonce value and the CPE SHOULD use a new cnonce value.

Note – if TLS is not used for a CPE WAN Management Protocol session, the policy used by the

ACS for reusing nonce values for HTTP authentication can significantly affect the security of the

session. In particular, if the ACS re-uses a nonce value when re-authenticating across multiple

TCP connections, the ACS can be vulnerable to replay attacks. However, if TLS is used for a

session, then this risk is largely mitigated.

The CPE and the ACS MUST support the MD5 digest algorithm. The CPE MUST

additionally support the MD5-sess digest algorithm.

3.4.6 Additional HTTP Requirements

The following additional HTTP-related requirements are specified:

 Whenever the ACS sends an empty HTTP response, it MUST use the ―204 (No

Content)‖ HTTP status code.

 Whenever the CPE sends an empty HTTP request, the length of the HTTP

message-body MUST be zero.

 The CPE MUST NOT make use of pipelining as defined in HTTP 1.1 [6].

3.5 Use of SOAP

The CPE WAN Management Protocol defines SOAP 1.1 [9] as the encoding syntax to

transport the RPC method calls and responses defined in Annex A.

The following describes the mapping of RPC methods to SOAP encoding:

 The encoding MUST use the standard SOAP 1.1 envelope and serialization

namespaces:

 Envelope namespace identifier "http://schemas.xmlsoap.org/soap/envelope/"

 Serialization namespace identifier "http://schemas.xmlsoap.org/soap/encoding/"

 The namespace identifier for CPE WAN Management Protocol version 1.n is always

―urn:dslforum-org:cwmp-1-n‖, e.g. for v1.0 it was ―urn:dslforum-org:cwmp-1-0‖ and

for v1.42 it will be ―urn:dslforum-org:cwmp-1-42‖.

 In SOAP Envelopes that they send, both ACS and CPE SHOULD use the

namespace identifier corresponding to the highest version that they support.

Note – in order to provide interoperability with v1.0 implementations, there are

circumstances where ACS and/or CPE need to use the v1.0 namespace identifier.

These requirements are given in Sections 3.2.1.1 (CPE session retry), 3.7.1.1

(CPE session initiation) and 3.7.2.1 (ACS session initiation).

 Both ACS and CPE MUST be able to extract the version from the namespace

identifier in SOAP Envelopes that they receive.

 The data types used in Annex A correspond directly to the data types defined in the

SOAP 1.1 serialization namespace. (In general, the types used in Annex A are

restricted subsets of the corresponding SOAP types.)

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 43 of 190

 Following the SOAP specification [9], elements specified as being of type

―anySimpleType‖ MUST include a type attribute to indicate the actual type of the

element.

 Elements of a type other than ―anySimpleType‖ MAY include a type attribute if and

only if the element is defined using a named data type in the RPC method XML

schema in Annex A. If a type attribute is included, the value of the type attribute

MUST exactly match the named data type specified in the schema.

 For an array argument, the argument name specified in the table in which the array is

defined MUST be used as the name of the overall array element. The name of the

member elements of an array MUST be the data type of the array as specified in the

table in which the array is defined (excluding the brackets and any length limitation

given in parentheses), and MUST NOT be namespace qualified. For example, an

argument named ParameterList, which is an array of ParameterValueStruct structures,

would be encoded as:

<ParameterList soap-enc:arrayType="cwmp:ParameterValueStruct[2]">

 <ParameterValueStruct>

 <name>Parameter1</name>

 <value xsi:type="someType">1234</value>

 </ParameterValueStruct>

 <ParameterValueStruct>

 <name>Parameter2</name>

 <value xsi:type="someType">5678</value>

 </ParameterValueStruct>

</ParameterList>

As a second example, the MethodList array in the GetRPCMethodsResponse would

be encoded as:

<MethodList soap-enc:arrayType="xsd:string[3]">

 <string>GetRPCMethods</string>

 <string>Inform</string>

 <string>TransferComplete</string>

</MethodList>

Note – in the above examples, the XML namespace prefixes used are only examples. The actual

namespace prefix values are arbitrary, and are used only to refer to a namespace declaration.

Note – it is always necessary to specify an XML namespace prefix for the arrayType attribute.

For arrays of CWMP-specific types this will always be the CWMP namespace prefix, and for

arrays of other types it will always be the XML Schema namespace prefix or the SOAP encoding

namespace prefix.

 Regarding the SOAP specification for encoding RPC methods (Section 7 of [9]), for

each method defined in Annex A, each argument listed in the method call represents

an [in] parameter, while each argument listed in the method response represents an

[out] parameter. There are no [in/out] parameters used.

 The RPC methods defined use the standard SOAP naming convention whereby the

response message corresponding to a given method is named by adding the

―Response‖ suffix to the name of the method.

 A SOAP Envelope MUST contain exactly one Body element.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 44 of 190

 A CPE MUST be able to accept a SOAP request with a total envelope size of at least

32 kilobytes (32768 bytes) without resulting in a ―Resources Exceeded‖ response.

 A CPE MUST be able to generate a SOAP response of any required length without

resulting in a ―Resources Exceeded‖ response, i.e. there is no maximum CPE SOAP

response length.

 An ACS MUST be able to accept a SOAP request with a total envelope size of at

least 32 kilobytes (32768 bytes) without resulting in a ―Resources Exceeded‖

response.

 An ACS MUST be able to generate a SOAP response of any required length without

resulting in a ―Resources Exceeded‖ response, i.e. there is no maximum ACS SOAP

response length.

 A fault response MUST make use of the SOAP Fault element using the following

conventions:

 The SOAP faultcode element MUST indicate the source of the fault, either

Client or Server, as appropriate for the particular fault. In this usage, Client

represents the originator of the SOAP request, and Server represents the SOAP

responder. The recipient of the fault response need not make use of the value of

this element, and MAY ignore the SOAP faultcode element entirely.

 The SOAP faultstring sub-element MUST contain the string ―CWMP

fault‖.

 The SOAP detail element MUST contain a Fault structure. The RPC method

XML schema in Annex A formally defines this structure. This structure contains

the following elements:

o A FaultCode element that contains a single numeric fault code as defined

in Annex A.

o A FaultString element that contains a human readable description of the

fault.

o A SetParameterValuesFault element, to be used only in an error

response to the SetParameterValues method, that contains a list of one or more

structures indicating the specific fault associated with each parameter in error.

This structure contains the following elements:

o A ParameterName element that contains the full Path Name of the

Parameter in error.

o A FaultCode element that contains a single numeric fault code as

defined in Annex A that indicates the fault associated with the particular

Parameter in error.

o A FaultString element that contains a human readable description of

the fault for the particular Parameter in error.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 45 of 190

Below is an example envelope containing a fault response:

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:cwmp="urn:dslforum-org:cwmp-1-0">

 <soap:Header>

 <cwmp:ID soap:mustUnderstand="1">1234</cwmp:ID>

 </soap:Header>

 <soap:Body>

 <soap:Fault>

 <faultcode>Client</faultcode>

 <faultstring>CWMP fault</faultstring>

 <detail>

 <cwmp:Fault>

 <FaultCode>9000</FaultCode>

 <FaultString>Upload method not supported</FaultString>

 </cwmp:Fault>

 </detail>

 </soap:Fault>

 </soap:Body>

</soap:Envelope>

Below is an example envelope containing a fault response for a SetParameterValues

method call:

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:cwmp="urn:dslforum-org:cwmp-1-0">

 <soap:Header>

 <cwmp:ID soap:mustUnderstand="1">1234</cwmp:ID>

 </soap:Header>

 <soap:Body>

 <soap:Fault>

 <faultcode>Client</faultcode>

 <faultstring>CWMP fault</faultstring>

 <detail>

 <cwmp:Fault>

 <FaultCode>9003</FaultCode>

 <FaultString>Invalid arguments</FaultString>

 <SetParameterValuesFault>

 <ParameterName>

 InternetGatewayDevice.Time.NTPServer1

 </ParameterName>

 <FaultCode>9007</FaultCode>

 <FaultString>Invalid IP Address</FaultString>

 </SetParameterValuesFault>

 <SetParameterValuesFault>

 <ParameterName>

 InternetGatewayDevice.Time.LocalTimeZoneName

 </ParameterName>

 <FaultCode>9007</FaultCode>

 <FaultString>String too long</FaultString>

 </SetParameterValuesFault>

 </cwmp:Fault>

 </detail>

 </soap:Fault>

 </soap:Body>

</soap:Envelope>

Note – in the above examples, the XML namespace prefixes used are only examples. The actual

namespace prefix values are arbitrary, and are used only to refer to a namespace declaration.

Note – in the above example, the CWMP namespace identifier ―urn:dslforum-org:cwmp-1-0‖ is

only an example and is not necessarily the version that is defined by this specification.

A fault response MUST only be sent in response to a SOAP request. A fault response

MUST NOT be sent in response to a SOAP response or another fault response.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 46 of 190

If a fault response does not follow all of the above requirements, the SOAP message

MUST be deemed invalid by the recipient. The consequences of invalid SOAP on the

CPE WAN Management Protocol session are described in Section 3.7.

 When processing a received envelope, both ACS and CPE MAY ignore: (a) any

unknown XML elements within the SOAP Body
6
 and their sub elements or content,

(b) any unknown XML attributes and their values, (c) any embedded XML

comments, and (d) any XML processing instructions. Alternatively the ACS and

CPE MAY explicitly validate the received XML and reject an envelope that includes

unknown elements. Note that this precludes extending existing messages by

including additional arguments without changing the name of the message.

 If an RPC method requires references to XML Schema namespaces (for example for

the ―type‖ attribute, or for references to XML Schema data types), these references

MUST be to the 2001 versions of these namespace definitions, specifically,

http://www.w3.org/2001/XMLSchema-instance and

http://www.w3.org/2001/XMLSchema. The recipient MAY reject an RPC method

that references a different version of either of these namespaces.

As an example of an RPC method encoded as described above, a GetParameterNames

request would be encoded as:

<soap-env:Envelope xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:cwmp="urn:dslforum-org:cwmp-1-0">

 <soap-env:Header>

 <cwmp:ID soap-env:mustUnderstand="1">0</cwmp:ID>

 </soap-env:Header>

 <soap-env:Body>

 <cwmp:GetParameterNames>

 <ParameterPath>Object.</ParameterPath>

 <NextLevel>0</NextLevel>

 </cwmp:GetParameterNames>

 </soap-env:Body>

</soap-env:Envelope>

Note – in the above example, the XML namespace prefixes used are only examples. The actual

namespace prefix values are arbitrary, and are used only to refer to a namespace declaration.

Note – the CWMP namespace prefix is specified only for elements that are defined at the top level

of the CWMP schema (ID and GetParameterNames in the above example). It is incorrect to

specify a namespace on elements contained within such elements (ParameterPath and NextLevel

in the above example). This is because the CWMP schema specifies an elementFormDefault value

of ―unqualified‖.

Note – in the above example, the CWMP namespace identifier ―urn:dslforum-org:cwmp-1-0‖ is

only an example and is not necessarily the version that is defined by this specification.

6 With the exception that reception of a SOAP request to invoke an unsupported RPC method MUST result in a

SOAP-layer fault response with a fault code indicating ―Method not Supported‖ (fault code 8000 or 9000).

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 47 of 190

The CPE WAN Management Protocol defines a series of SOAP Header elements as

specified in Table 4.

Table 4 – SOAP Header Elements

Tag Name Description

ID This header element MAY be used to associate SOAP requests and responses using a unique
identifier for each request, for which the corresponding response contains the matching identifier. The
value of the identifier is an arbitrary string and is set at the discretion of the requester.

If used in a SOAP request, the ID header MUST appear in the matching response (whether the
response is a success or failure).

Because support for this header is required, the mustUnderstand attribute MUST be set to “1” (true) for
this header.

HoldRequests This header MAY be included in SOAP envelopes sent from an ACS to a CPE to regulate transmission
of requests from the CPE. This header MUST NOT appear in envelopes sent from a CPE to an ACS.

This tag has Boolean values of “0” (false) or “1” (true). If the tag is not present, this is interpreted as
equivalent to a “0” (false).

The behavior of the CPE on reception of this header is defined in Section 3.7.1.3. Support in the CPE
for this header is REQUIRED.

Because support for this header is required, the mustUnderstand attribute MUST be set to “1” (true) for
this header.

SessionTimeout This header MAY be included in SOAP envelopes sent from a CPE to an ACS during CWMP Session
initiation for the sole use of providing a suggestion of an acceptable CWMP Session timeout duration.
This header MUST NOT appear in envelopes sent from an ACS to a CPE. This header also MUST
NOT appear in envelopes whose SOAP body does not include a CWMP Inform request.

The SessionTimeout is an integer that represents the number of seconds that SHOULD be used by
the ACS as the amount of time to wait before timing out a CWMP Session due to the CPE not
responding. The suggested SessionTimeout MUST be 30 seconds or greater.

Because support for this header is OPTIONAL, the mustUnderstand attribute MUST be set to “0”
(false) for this header.

Below is an example of two messages showing the use of all of the defined headers:

CPE to ACS SOAP header
<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:cwmp="urn:dslforum-org:cwmp-1-2">

 <soap:Header>

 <cwmp:ID soap:mustUnderstand="1">1234</cwmp:ID>

 <cwmp:SessionTimeout soap:mustUnderstand="0">40</cwmp:SessionTimeout>

 </soap:Header>

 <soap:Body>

 <cwmp:Action>

 <argument>value</argument>

 </cwmp:Action>

 </soap:Body>

</soap:Envelope>

ACS to CPE SOAP header

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:cwmp="urn:dslforum-org:cwmp-1-2">

 <soap:Header>

 <cwmp:ID soap:mustUnderstand="1">1234</cwmp:ID>

 <cwmp:HoldRequests soap:mustUnderstand="1">0</cwmp:HoldRequests>

 </soap:Header>

 <soap:Body>

 <cwmp:Action>

 <argument>value</argument>

 </cwmp:Action>

 </soap:Body>

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 48 of 190

</soap:Envelope>

Note – in the above example, the XML namespace prefixes used are only examples. The actual

namespace prefix values are arbitrary, and are used only to refer to a namespace declaration.

Note – in the above example, the CWMP namespace identifier ―urn:dslforum-org:cwmp-1-2‖ is

only an example and is not necessarily the version that is defined by this specification.

3.6 RPC Support Requirements

Table 5 provides a summary of all methods, and indicates the conditions under which

implementation of each RPC method defined in Annex A is REQUIRED or OPTIONAL.

Table 5 – RPC message requirements

Method name CPE requirement ACS requirement

CPE methods Responding Calling

GetRPCMethods REQUIRED OPTIONAL

SetParameterValues REQUIRED REQUIRED

GetParameterValues REQUIRED REQUIRED

GetParameterNames REQUIRED REQUIRED

SetParameterAttributes REQUIRED OPTIONAL

GetParameterAttributes REQUIRED OPTIONAL

AddObject REQUIRED OPTIONAL

DeleteObject REQUIRED OPTIONAL

Reboot REQUIRED OPTIONAL

Download REQUIRED
7
 REQUIRED7

ScheduleDownload OPTIONAL OPTIONAL

Upload OPTIONAL OPTIONAL

FactoryReset OPTIONAL OPTIONAL

GetQueuedTransfers (DEPRECATED) OPTIONAL
8
 OPTIONAL

GetAllQueuedTransfers OPTIONAL OPTIONAL

CancelTransfer OPTIONAL OPTIONAL

ScheduleInform OPTIONAL OPTIONAL

ChangeDUState OPTIONAL OPTIONAL

SetVouchers (DEPRECATED) OPTIONAL
9
 OPTIONAL

GetOptions (DEPRECATED) OPTIONAL9 OPTIONAL

ACS methods Calling Responding

GetRPCMethods OPTIONAL REQUIRED

Inform REQUIRED REQUIRED

TransferComplete REQUIRED
10

 REQUIRED
11

AutonomousTransferComplete OPTIONAL REQUIRED

7 REQUIRED only if file downloads of any type are supported.
8 DEPRECATED in favor of GetAllQueuedTransfers.
9 The voucher mechanism has been DEPRECATED in favor of the Software Module Management mechanism.
10 REQUIRED only if file downloads or uploads of any type are supported.
11 REQUIRED only if the ACS supports initiation of file downloads or uploads.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 49 of 190

Method name CPE requirement ACS requirement

DUStateChangeComplete OPTIONAL
12

 OPTIONAL
13

AutonomousDUStateChangeComplete OPTIONAL OPTIONAL

RequestDownload OPTIONAL OPTIONAL

Kicked (DEPRECATED) OPTIONAL OPTIONAL
14

3.6.1 Alias-Based Addressing Mechanism Requirements

The OPTIONAL Alias-Based Addressing Mechanism makes use of the Instance Alias

identifiers defined in A.2.2.2 and described in Appendix II.

An ACS that supports the Alias-Based Addressing Mechanism MUST fully comply with

all the following requirements:

1. An ACS MUST NOT use Instance Alias identifiers with a CPE that has not

included the ManagementServer.AliasBasedAddressing Parameter (set to true) in

the Inform Parameters.

A CPE that supports the Alias-Based Addressing Mechanism MUST fully comply with

all the following requirements:

1. A CPE MUST support Instance Alias identifiers as alternative methods to address

Multi-Instance Objects in addition to Instance Number identifiers.

2. Upon creating an instance of a Multi-Instance Object, the CPE MUST assign a

unique Instance Alias (using a "cpe-" prefix) unless the Instance Alias value was

provided in CWMP RPC from the ACS. Aliases for instances created as a result

of any other action or contained in CPE factory defaults MUST be created with

the ―cpe-― prefix. The CPE MUST use the same Instance Alias values for factory

default objects across all instances of the CPE of the same hardware model and

software version.

3. The CPE MUST support the ManagementServer.AliasBasedAddressing

Parameter as a Forced Inform Parameter and include it (set to true) in all Inform

messages.

4. The CPE MUST support the ManagementServer.AutoCreateInstances Parameter

that is used by the ACS to enable or disable the CPE Auto-Create Instance

Mechanism (defined in A.3.2.1).

5. The CPE MUST support the ManagementServer.InstanceMode Parameter. This is

used by the ACS to control whether the CPE will use Instance Numbers or

Instance Aliases in returned Path Names as detailed in requirements 6, 7, 8 and 9.

6. Upon receiving a request, the CPE MUST support uniform or mixed Instance

Identifiers for Objects in the Parameter Path Name. A mixed Parameter Path

Name has different Instance Identifier types (Instance Number or Instance Alias)

12 If the CPE responds to the ChangeDUState RPC then it MUST support this RPC.
13 If the ACS supports the ChangeDUState RPC then it MUST respond to this RPC.
14 DEPRECATED due to the deprecation of Annex D, which is the Section that defined the usage of this RPC.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 50 of 190

at the different node levels. When issuing a response, the CPE MUST match each

Object in the Parameter Path Name at each node level with the same Instance

Identifier type (Instance Number or Instance Alias) in the ACS request. All

permutations (in any order) present in the following table are valid and MUST be

supported:

Path Type Message Path Name Example

Uniform Instance
Number Identifier

Request TopGroup.Lev1Obj.1.Lev2Obj.1.

Response TopGroup.Lev1Obj.1.Lev2Obj.1.Parameter

Uniform Instance
Alias Identifier

Request TopGroup.Lev1Obj.[a].Lev2Obj.[b].

Response TopGroup.Lev1Obj.[a].Lev2Obj.[b].Parameter

Mixed Instance
Identifier

Request TopGroup.Lev1Obj.1.Lev2Obj.[b].

Response TopGroup.Lev1Obj.1.Lev2Obj.[b].Parameter

7. If the CPE has to issue a response that contains Object instances in the Parameter

Path Name with node levels below the Path Node that was received in the ACS

request, it MUST use the ManagementServer.InstanceMode Parameter to choose

how to provide the Path Name in the response:

o If the ManagementServer.InstanceMode Parameter is set to

InstanceNumber, all the Objects below the received Partial Path Name

MUST be returned using Instance Number identifiers only. All the

permutations (in any order) present in the following table are valid and

MUST be supported:

Path Type Message Path Name Example

Uniform Instance
Number identifier

Request TopGroup.Lev1Obj.1.Lev2Obj.1.

Response TopGroup.Lev1Obj.1.Lev2Obj.1.Lev3Obj.1.Parameter

Uniform Instance
Alias identifier

Request TopGroup.Lev1Obj.[a].Lev2Obj.[b].

Response TopGroup.Lev1Obj.[a].Lev2Obj.[b]. Lev3Obj.1.Parameter

Mixed Instance

identifier

Request TopGroup.Lev1Obj.1.Lev2Obj.[b].

Response TopGroup.Lev1Obj.1.Lev2Obj.[b]. Lev3Obj.1.Parameter

o If the ManagementServer.InstanceMode Parameter is set to InstanceAlias,

all the Objects located below the received Partial Path Name MUST

contain Instance Alias identifiers where such identifiers exist. All the

permutations (in any order) present in the following table are valid and

MUST be supported:

Path Type Message Path Name Example

Uniform Instance
Number identifier

Request TopGroup.Lev1Obj.1.Lev2Obj.1.

Response TopGroup.Lev1Obj.1.Lev2Obj.1.Lev3Obj.[c].Parameter

Uniform Instance
Alias identifier

Request TopGroup.Lev1Obj.[a].Lev2Obj.[b].

Response TopGroup.Lev1Obj.[a].Lev2Obj.[b].Lev3Obj.[c].Parameter

Mixed Instance

identifier

Request TopGroup.Lev1Obj.1.Lev2Obj.[b].

Response TopGroup.Lev1Obj.1.Lev2Obj.[b]. Lev3Obj.[c].Parameter

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 51 of 190

8. The ManagementServer.InstanceMode Parameter affects the ParameterList

argument of the CPE‘s Inform RPC, by how the CPE returns Parameter Path

Names.

o If the ManagementServer.InstanceMode Parameter is set to

InstanceNumber, then all the Objects in Parameter Path Names MUST use

Instance Number identifiers only. For example:

Path Type Path Name Example

Uniform Instance
Number identifier

TopGroup.Lev1Obj.1.Lev2Obj.1.Parameter

o If the ManagementServer.InstanceMode Parameter is set to InstanceAlias,

then all the Objects in Parameter Path Names MUST use Instance Alias

identifiers where such identifiers exist. For example:

Path Type Path Name Example

Uniform Instance
Alias identifier

TopGroup.Lev1Obj.[a].Lev2Obj.[b].

9. The ManagementServer.InstanceMode Parameter also affects how the CPE

returns the Parameter
15

 values that are Path Names or lists of Path Names.

o If the ManagementServer.InstanceMode Parameter is set to

InstanceNumber, then all the Parameter values that are Path Names or lists

of Path Names MUST be returned using Instance Number identifiers only.

For example:

Path Type Path Name Example

Uniform Instance
Number identifier

TopGroup.Lev1Obj.1.Lev2Obj.1.

o If the ManagementServer.InstanceMode Parameter is set to InstanceAlias,

then all the Parameter values that are Path Names or lists of Path Names

MUST be returned as follows:

 For the Parameter values that were not generated by the ACS via a

SetParameterValues or AddObject, using Instance Alias identifiers

where such identifiers exist. For example:

Path Type Path Name Example

Uniform Instance
Alias identifier

TopGroup.Lev1Obj.[cpe-1].Lev2Obj.[cpe-2].

15 This rule does not apply when the Parameter is a weak reference (Section 3.2.4/TR-106 [13]). In this case, the stored

value is always returned.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 52 of 190

 For the Parameter values that were generated by the ACS via a

SetParameterValues or AddObject, using the same Instance

Identifier types used when they were set. For example:

Path Type Action Parameter Value Path Name Example

Uniform Instance
Number identifier

Set TopGroup.Lev1Obj.1.Lev2Obj.1

Returned TopGroup.Lev1Obj.1.Lev2Obj.1

Uniform Instance
Alias identifier

Set TopGroup.Lev1Obj.[a].Lev2Obj.[b]

Returned TopGroup.Lev1Obj.[a].Lev2Obj.[b]

Mixed Instance

identifier

Set TopGroup.Lev1Obj.1.Lev2Obj.[b]

Returned TopGroup.Lev1Obj.1.Lev2Obj.[b]

10. The CPE MUST change its ManagementServer.InstanceMode Parameter to its

factory default value upon any event that requires the CPE to issue a

BOOTSTRAP event.

3.7 Transaction Session Procedures

All transaction sessions MUST begin with an Inform message from the CPE contained in

the initial HTTP POST. This serves to initiate the set of transactions and communicate

the limitations of the CPE with regard to message encoding. An Inform message MUST

NOT occur more than once during a session (this limitation does not apply to the

potential need to retransmit an Inform request due to an HTTP ―401 Unauthorized‖ status

code received as part of the HTTP authentication process, or due to an HTTP 3xx status

code received as part of an HTTP redirect).

The session ceases when both the ACS and CPE have no more requests to send and no

responses remain due from either the ACS or the CPE. At such time, the CPE MUST

close the connection.

No more than one transaction session between a CWMP Endpoint and its associated ACS

can exist at a time.

Note – a transaction session is intended to persist only as long as there are messages to be

transferred in either direction. A session and its associated TCP connection are not intended to

be held open after a specific exchange of information completes.

3.7.1 CPE Operation

3.7.1.1 Session Initiation

The CPE will initiate a transaction session to the ACS as a result of the conditions listed

in Section 3.2.1. Once the connection to the ACS is successfully established, the CPE

initiates a session by sending an initial Inform request to the ACS. This indicates to the

ACS the current status of the CPE and that the CPE is ready to accept requests from the

ACS.

The CPE MUST consider the session to have been successfully initiated if and only if it

receives a successful Inform response.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 53 of 190

If the CPE receives a successful Inform response in which the namespace identifier

indicates that the ACS supports only v1.0 of the CPE WAN Management Protocol, the

CPE MUST revert to v1.0 for the remainder of the session.

Note – v1.0 of the protocol is a special case because it did not consider

interoperability between different versions of the protocol. New requirements

added in v1.1 guarantee that a CPE and an ACS which both support v1.1 (or

later) will interoperate without the need for either party to revert to an earlier

version (it is implied that later minor protocol versions will not add mandatory

protocol features or RPC methods).

From the time a session is initiated until the session is terminated, the CPE MUST ensure

the transactional integrity of all Parameters accessible via the CPE WAN Management

Protocol. During the course of a session, all configurable Parameters of the CPE MUST

appear to the ACS as a consistent set modified only by the ACS. Throughout the session

the CPE MUST shield the ACS from seeing any updates to the Parameters performed by

other entities. This includes the values of configurable Parameters as well as presence or

absence of configurable Parameters and Objects. The means by which the CPE achieves

this transactional integrity is a local matter.

The CPE MUST take any necessary steps to ensure transactional integrity of the session.

For example, it might be necessary, in exceptional cases, for the CPE to terminate a

LAN-side management session in order to meet CWMP session establishment

requirements.

3.7.1.2 Incoming Requests

While in a session (after the session was successfully initiated, but before the session

termination criteria described in 3.7.1.4 have been met), on reception of a SOAP request

from the ACS, the CPE MUST respond to that request in the next HTTP POST that it

sends to the ACS.

3.7.1.3 Outgoing Requests

While in a session (after the session was successfully initiated, but before the session

termination criteria described in 3.7.1.4 have been met), if the CPE has one or more

requests to send to the ACS, the CPE MUST send one of these requests in the next HTTP

POST if and only if all of the following conditions are met:

 The most recently received HTTP response from the ACS did not contain a SOAP

request.

 The ACS has indicated that HoldRequests is false (see Section 3.5). This condition is

met if and only if the most recently received HTTP response from the ACS contained

one of the following:

o A SOAP envelope with the HoldRequests header set to a value of false.

o A SOAP envelope with no HoldRequests header.

o No SOAP envelope (an empty HTTP response).

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 54 of 190

 At any prior time during the current session, the CPE has not sent an empty HTTP

POST at a time that the ACS had indicated that HoldRequests is false (as described

above).

If the CPE has more than one request pending when the above criteria are met, the choice

of which request to send is at the discretion of the CPE unless otherwise specified.

While in a session, if any of the above conditions are not met or if the CPE has no

requests to send to the ACS, and if the most recent HTTP response from the ACS did not

contain a SOAP request, the CPE MUST send an empty HTTP POST.

Once the CPE has sent an empty HTTP POST when the most recent HoldRequests was

false (see Section 3.5), the CPE MUST NOT send any further requests for the remainder

of the session. In this case, if the CPE has additional requests to send to the ACS, the

CPE MUST wait until a subsequent session to send these requests.

Table 6 summarizes what the CPE MUST send to the ACS as long as the session is in

progress (after the session was successfully initiated, but before the session termination

criteria described in 3.7.1.4 have been met).

Table 6 – CPE Message Transmission Constraints

 HoldRequests ACS request outstanding No ACS request outstanding

CPE requests pending
16

 false Response Request

true Response Empty HTTP POST

No CPE requests pending - Response Empty HTTP POST

3.7.1.4 Session Termination

The CPE MUST terminate the transaction session when all of the following conditions

are met:

1) The ACS has no further requests to send the CPE. The CPE concludes this if and

only if the most recent HTTP response from the ACS was empty.

2) The CPE has no further requests to send to the ACS and the CPE has issued an

empty HTTP POST to the ACS while HoldRequests is false (which indicates to

the ACS that the CPE has no further requests for the remainder of the session).

As defined in Table 6, if this condition has not been met but the CPE has no

further requests or responses, it MUST send an empty HTTP POST, which will

then fulfill this condition.

3) The CPE has received all outstanding response messages from the ACS.

4) The CPE has sent all outstanding response messages to the ACS resulting from

prior requests.

The CPE MUST also consider a session unsuccessfully terminated if it has received no

HTTP response from an ACS for a locally determined time period of not less than 30

16 The CPE can have requests pending only if the CPE has not already sent an empty HTTP POST when the most

recent HoldRequests was false. Otherwise, the CPE is considered to have no requests pending.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 55 of 190

seconds. If the CPE fails to receive an HTTP response, the CPE MUST NOT attempt to

retransmit the corresponding HTTP request as part of the same session.

If the CPE receives a SOAP-layer fault in response to an Inform request with a fault code

other than ―Retry request‖ (fault code 8005), the CPE MUST consider the session to have

terminated unsuccessfully.

If the CPE receives an HTTP response from the ACS for which the XML is not well-

formed, for which the SOAP structure is deemed invalid, that contains a SOAP fault that

is not in the form specified in Section 3.5, or for which the CPE deems that the protocol

has been violated, the CPE MUST consider the session to have terminated

unsuccessfully.

If the CPE receives an HTTP response from the ACS with a fault status code (a 4xx or

5xx status code) that is not otherwise handled by the CPE, the CPE MUST consider the

session to have terminated unsuccessfully. Note that while the CPE would accept an

HTTP response with a ―401 Unauthorized‖ status code as part of the normal

authentication process, when the CPE subsequently attempts to authenticate, if the

resulting HTTP response contains a ―401 Unauthorized‖ status code, the CPE MUST

consider the session to have terminated unsuccessfully.

If the above conditions are not met, the CPE MUST continue the session.

If the CPE receives a SOAP-layer fault response as defined in Section 3.5 with a fault

code other than ―Retry request‖ (fault code 8005) in response to any method other than

Inform, the CPE MUST continue with the remainder of the session. That is, a fault

response of this type MUST NOT cause the session to unsuccessfully terminate.

Note – in a fault condition, it is entirely at the discretion of the ACS whether its fault response is a

SOAP-layer fault, which would cause the session to continue, or an HTTP-layer fault, which

would cause the session to terminate unsuccessfully.

If one or more messages exchanged during a session results in the CPE needing to reboot

to complete the requested operation, the CPE MUST wait until after the session has

cleanly terminated based on the above criteria before performing the reboot.

If the session terminates unexpectedly, the CPE MUST retry the session as specified in

Section 3.2.1.1. The CPE MAY place locally specified limits on the number of times it

attempts to reestablish a session in this case.

3.7.1.5 Events

An event is an indication that something of interest has happened that requires the CPE to

notify the ACS via an Inform request defined in Section A.3.3.1. The CPE MUST

attempt to deliver every event at least once. If the CPE is not currently in a session with

the ACS, it MUST attempt to deliver events immediately; otherwise, it MUST attempt to

deliver them after the current session terminates. The CPE MUST receive confirmation

from the ACS for it to consider an event successfully delivered. Once the CPE has

delivered an event successfully, the CPE MUST NOT send the same event again. On the

other hand, the ACS MUST be prepared to receive the same event more than once

because the ACS might have sent a response the CPE never receives. Many types of

events (e.g., PERIODIC, VALUE CHANGE) can legally appear in subsequent sessions

even when successfully delivered in the earlier session. In such cases, an event in the

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 56 of 190

later session indicates the reoccurrence of an event of the same type rather than an

attempt to retry an event delivery failure.

For every type of event there is a policy that dictates if and when the CPE MUST retry

event delivery if a previous delivery attempt failed. When event delivery is retried it

MUST be in the immediately following session; events whose delivery fails in one

session cannot be omitted in the following session and then later redelivered.

For most events, delivery is confirmed when the CPE receives a successful

InformResponse. Six standard event types (KICKED
17

, TRANSFER COMPLETE,

AUTONOMOUS TRANSFER COMPLETE, REQUEST DOWNLOAD, DU STATE

CHANGE COMPLETE, and AUTONOMOUS DU STATE CHANGE COMPLETE)

indicate that one or more methods (Kicked [Section A.4.2.1], TransferComplete [Section

A.3.3.2], AutonomousTransferComplete [Section A.3.3.3], RequestDownload [Section

A.4.2.2], DUStateChangeComplete [Section A.4.2.3], AutonomousDUStateChange-

Complete [Section A.4.2.4] respectively) will be called later in the session, and it is the

successful response to these methods that indicates event delivery. The CPE MAY also

send vendor-specific events (using the syntax specified in Table 7), in which case

successful delivery, retry, and discard policy is subject to vendor definition.

If no new events occur while the CPE has some events to redeliver, the CPE MUST

attempt to redeliver them according to the schedule defined by the session retry policy in

Section 3.2.1.1.

Below is a table of event types, their codes in an Inform request, their cumulative

behavior, the responses the CPE MUST receive to consider them successfully delivered,

and the policy for retrying and/or discarding them if delivery is unsuccessful.

17 DEPRECATED due to the deprecation of Annex D, which is the Section that defined the usage of this Event.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 57 of 190

Table 7 – Event Types

Event Code Cumulative
Behavior

Explanation ACS Response for
Successful Delivery

Retry/Discard
Policy

"0 BOOTSTRAP" Single Indicates that the session was
established due to first-time
CPE installation or a change to
the ACS URL.

The specific conditions that
MUST result in the
BOOTSTRAP EventCode are:

 First time connection of the
CWMP Endpoint to the
ACS from the factory.

 First time connection of the
CWMP Endpoint to the
ACS after a factory reset.

 First time connection of the
CWMP Endpoint to the
ACS after the ACS URL
has been modified in any
way.

Note that as with all other
EventCode values, the
BOOTSTRAP EventCode MAY
be included in the Event array
along with other EventCode
values. It would be expected,
for example, that on the initial
boot of the CPE from the
factory, the CPE would include
both the BOOTSTRAP and
BOOT EventCodes.

InformResponse The CPE MUST NOT
ever discard an
undelivered
BOOTSTRAP event.

All other undelivered
events MUST be
discarded on
BOOTSTRAP.

"1 BOOT" Single Indicates that the session was
established due to the CPE
being powered up or reset.
This includes initial system
boot, as well as reboot due to
any cause, including use of the
Reboot method.

InformResponse The CPE MUST retry
delivery until it
reboots before
discarding it.

"2 PERIODIC" Single Indicates that the session was
established on a periodic
Inform interval.

InformResponse The CPE MUST NOT
ever discard an
undelivered
PERIODIC event
(except on
BOOTSTRAP).

"3 SCHEDULED" Single Indicates that the session was
established due to a
ScheduleInform method call.

This event code MUST only be
used with the “M
ScheduleInform” event code
(see “M ScheduleInform”,
below).

InformResponse The CPE MUST NOT
ever discard an
undelivered
SCHEDULED event
(except on
BOOTSTRAP).

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 58 of 190

Event Code Cumulative
Behavior

Explanation ACS Response for
Successful Delivery

Retry/Discard
Policy

"4 VALUE
CHANGE"

Single Indicates that since the last
successful Inform (under the
conditions defined in Section
A.3.2.4), the value of one or
more Parameters with Passive
or Active Notification enabled
(including Parameters defined
to require Forced Active
Notification) has been modified
(even if its value has changed
back to the value it had at the
time of the last successful
Inform).

If this EventCode is included in
the Event array, all such
modified Parameters MUST be
included in the ParameterList in
this Inform. If this event is ever
discarded then the list of
modified Parameters MUST be
discarded at the same time.

InformResponse The CPE MUST retry
delivery until it
reboots or the ACS
URL is modified
before discarding it.

"5 KICKED"
18

(DEPRECATED)
Single Indicates that the session was

established for the purpose of
web identity management (see
Annex D) and that a Kicked
method (see Section A.4.2.1)
will be called one or more times
during this session.

KickedResponse The CPE MAY retry
delivery at its
discretion.

“6 CONNECTION
REQUEST”

Single Indicates that the session was
established due to a
Connection Request from the
ACS as described in Section
3.2.

InformResponse The CPE MUST NOT
retry delivery.

“7 TRANSFER
COMPLETE”

Single Indicates that the session was
established to indicate the
completion of a previously
requested download or upload
(either successful or
unsuccessful) and that the
TransferComplete method will
be called one or more times
during this session.

This event code MUST only be
used with the “M Download”,
“M ScheduleDownload” and/or
“M Upload” event codes (see
“M Download”, “M
ScheduleDownload” and “M
Upload”, below).

TransferCompleteResponse The CPE MUST NOT
ever discard an
undelivered
TRANSFER
COMPLETE event
(except on
BOOTSTRAP).

"8 DIAGNOSTICS
COMPLETE"

Single Used when reestablishing a
connection to the ACS after
completing one or more
diagnostic test initiated by the
ACS.

InformResponse The CPE MUST retry
delivery until it
reboots before
discarding it.

“9 REQUEST
DOWNLOAD”

Single Indicates that the session was
established for the CPE to call
the RequestDownload method
(see Section A.4.2.2) one or
more times.

RequestDownloadResponse The CPE MAY retry
delivery at its
discretion.

18 DEPRECATED due to the deprecation of Annex D, which is the Section that defined the usage of this Event.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 59 of 190

Event Code Cumulative
Behavior

Explanation ACS Response for
Successful Delivery

Retry/Discard
Policy

“10 AUTONOMOUS
TRANSFER
COMPLETE”

Single Indicates that the session was
established to indicate the
completion of a download or
upload that was not specifically
requested by the ACS (either
successful or unsuccessful)
and that the Autonomous-
TransferComplete method will
be called one or more times
during this session.

AutonomousTransfer-
CompleteResponse

The CPE MUST NOT
ever discard an
undelivered
AUTONOMOUS
TRANSFER
COMPLETE event
(except on
BOOTSTRAP).

“11 DU STATE
CHANGE
COMPLETE”

Single Indicates that the session was
established to indicate the
completion of a previously
requested DU state change,
either successful or
unsuccessful, and that the
DUStateChangeComplete
method will be called during
this session.

This method MUST only be
used with the “M
ChangeDUState” event code
(see “M ChangeDUState”,
below).

DUStateChangeComplete-
Response

The CPE MUST NOT
ever discard an
undelivered DU
STATE CHANGE
COMPLETE event
(except on
BOOTSTRAP).

“12 AUTONOMOUS
DU STATE
CHANGE
COMPLETE”

Single Indicates that the session was
established to indicate the
completion of a DU state
change not specifically
requested by a
ChangeDUState RPC (either
successful or unsuccessful)
and that the Autonomous-
DUStateChangeComplete
method will be called during
this session.

AutonomousDUState-
ChangeCompleteResponse

The CPE MUST NOT
ever discard an
undelivered
AUTONOMOUS DU
STATE CHANGE
COMPLETE event
(except on
BOOTSTRAP).

“M Reboot” Multiple The CPE rebooted upon
request from the ACS through
the use of the Reboot RPC.
Overlaps with one of the
causes that can generate a “1
BOOT” event code.

InformResponse The CPE MUST NOT
ever discard an
undelivered “M
Reboot” event
(except on
BOOTSTRAP).

“M ScheduleInform” Multiple The ACS requested a
scheduled Inform.

InformResponse The CPE MUST NOT
ever discard an
undelivered “M
ScheduleInform”
event (except on
BOOTSTRAP).

“M Download” Multiple A content download previously
requested by the ACS using
the Download method (see
Section A.3.2.8) has finished.
Overlaps with “7 TRANSFER
COMPLETE”.

TransferCompleteResponse The CPE MUST NOT
ever discard an
undelivered “M
Download” event
(except on
BOOTSTRAP).

“M
ScheduleDownload”

Multiple A content download previously
requested by the ACS using
the ScheduleDownload method
(see Section A.4.1.8) has
finished. Overlaps with “7
TRANSFER COMPLETE”.

TransferCompleteResponse The CPE MUST NOT
ever discard an
undelivered “M
ScheduleDownload”
event (except on
BOOTSTRAP).

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 60 of 190

Event Code Cumulative
Behavior

Explanation ACS Response for
Successful Delivery

Retry/Discard
Policy

“M Upload” Multiple A content upload previously
requested by the ACS using
the Upload method (see
Section A.4.1.5) has finished.
Overlaps with “7 TRANSFER
COMPLETE”.

TransferCompleteResponse The CPE MUST NOT
ever discard an
undelivered “M
Upload” event
(except on
BOOTSTRAP).

“M ChangeDUState” Multiple A DU state change previously
requested by the ACS using
the ChangeDUState method
(see Section A.4.1.10) has
finished. Overlaps with “11 DU
STATE CHANGE
COMPLETE”.

DUStateChangeComplete-
Response

The CPE MUST NOT
ever discard an
undelivered “M
ChangeDUState”
event (except on
BOOTSTRAP).

"M " <vendor-
specific method>

Not
specified

The action requested by a
vendor-specific method is
complete. The action taken by
the CPE and response by the
ACS is vendor-specific. A
vendor-specific method name
MUST be in the form specified
in Section A.3.1.1.

For example:

“M X_012345_MyMethod”

Not specified Not specified

“X “<VENDOR> ” ”
<event>

Not
specified

Vendor-specific event. The
VENDOR after the “X“ and
space is a unique vendor
identifier, which MAY be either
an OUI or a domain name. The
OUI or domain name used for a
given vendor-specific event
MUST be one that is assigned
to the organization that defined
this method (which is not
necessarily the same as the
vendor of the CPE or ACS). An
OUI is an organizationally
unique identifier as defined in
[10], which MUST be formatted
as a 6 hexadecimal-digit OUI
(organizationally unique
identifier), with all upper-case
letters and any leading zeros
included. A domain name
MUST be upper case with each
dot (“.”) replaced with a hyphen
or underscore.

For example:

“X 012345 MyEvent”
“X ACME_COM MyEvent”

Not specified Not specified

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 61 of 190

The Cumulative Behavior column of the above table distinguishes between event types

that are not cumulative (―Single‖) and those that are cumulative (―Multiple‖). For

example, if the CPE reboots while the previous ―1 BOOT‖ event has not yet been

delivered, it makes no sense for the next Inform to contain two ―1 BOOT‖ Event array

entries. In contrast, if a download completes while the previous ―M Download‖ event

has not yet been delivered, the next Inform would contain two ―M Download‖ Event

array entries because each relates to a different ACS request. The ―Single‖ and

―Multiple‖ cumulative behaviors are defined as follows:

 If an event with ―Single‖ cumulative behavior occurs, the list of events in the next

Inform MUST contain only one instance of this EventCode, regardless of whether

there are any undelivered events of the same type.

 If an event with ―Multiple‖ cumulative behavior occurs, the new EventCode MUST

be included in the list of events, independent of any undelivered events of the same

type, and this MUST NOT affect any such undelivered events.

When one or more events are directly related to the same root cause, then all such events

MUST be included in the Event array. Below are examples of such cases (this list is not

exhaustive):

 Reboot caused by the Reboot RPC method. In this case the Inform MUST include at

least the following EventCode values:

"1 BOOT"

"M Reboot"

 TransferComplete sent in a new session due to a prior Download request, where there

is no reboot associated with the completion of the transfer:

"7 TRANSFER COMPLETE"

"M Download"

 One or more Parameter values for which Passive Notification has been set have

changed since the most recent Inform, and a periodic Inform occurs (in this case, the

events MUST be included in the same Inform because for Passive Notifications, the

Inform in which the ―4 VALUE CHANGE‖ event would occur would have to result

from some other cause—in this example, a periodic inform):

"2 PERIODIC"

"4 VALUE CHANGE"

For events that are due to unrelated causes, if they occur simultaneously, the CPE

SHOULD include all such events in the same Inform message, but MAY send separate

Inform messages for each such event. An example of unrelated events is:

"2 PERIODIC"

"7 TRANSFER COMPLETE"

3.7.1.6 Method Retry Behavior

If in response to a request from the CPE the CPE receives a ―Retry request‖ response

(fault code 8005) from the ACS, the CPE MUST resend the identical request in the next

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 62 of 190

HTTP POST within the current session. This behavior applies to all ACS methods

(including Inform).

If instead the CPE receives a fault response with any fault code other than 8005 in

response to any method other than Inform, the CPE MUST proceed with the session, and

MUST NOT attempt to retry the method (such a response in the case of Inform will

terminate the session, as described in Section 3.7.1.4).

3.7.2 ACS Operation

3.7.2.1 Session Initiation

Upon receiving the initial Inform request from the CPE, if the ACS wishes to allow the

initiation of the session, it MUST respond with an Inform response.

If the ACS receives an initial Inform request from the CPE in which the namespace

identifier indicates that the CPE supports only v1.0 of the CPE WAN Management

Protocol, the ACS MUST revert to v1.0 for the entire session.

Note – v1.0 of the protocol is a special case because it did not consider

interoperability between different versions of the protocol. New requirements

added in v1.1 guarantee that a CPE and an ACS which both support v1.1 (or

later) will interoperate without the need for either party to revert to an earlier

version (it is implied that later minor protocol versions will not add mandatory

protocol features or RPC methods).

Note – an ACS that supports only v1.0 of the CPE WAN Management Protocol

will expect the initial Inform request from the CPE to use the v1.0 namespace

identifier ―urn:dslforum-org:cwmp-1-0‖, and to contain only event types that

were defined in v1.0 of the protocol. The behavior of such an ACS when it

receives an initial Inform from a CPE that supports v1.1 (or later) is not possible

to predict. The ACS might fail to notice that the CPE supports a later version, in

which case it will respond with an Inform response; it might return a SOAP-layer

fault; or it might return an HTTP-layer fault. If it returns a fault, the CPE will

need to decide whether or not to revert to v1.0 of the protocol when retrying the

failed session.

If the ACS receives an initial Inform request from the CPE in which the CWMP

namespace identifier indicates an unknown later minor version than that which is

implemented within the ACS, the behavior of an ACS is not possible to predict. If the

namespace identifier represents a later minor version, the ACS SHOULD assume that the

namespace it knows about is backwards compatible, in which case it will respond with an

Inform response containing a namespace identifier supported by the ACS; or it MAY

return a SOAP-layer fault; or it MAY return an HTTP-layer fault. If the ACS returns a

fault, the CPE will need to decide whether or not to revert to v1.0 of the protocol when

retrying the failed session.

The ACS MUST ignore any event types that it does not recognize.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 63 of 190

3.7.2.2 Incoming Requests

While in a session (after the session was successfully initiated, but before the session

termination criteria described in 3.7.2.4 have been met), on reception of a SOAP request

from the CPE, the ACS MUST respond to that request in the next HTTP response sent to

the CPE.

If the ACS wishes to prevent the CPE sending requests during some portion of the

session, it MAY do so by setting the HoldRequests header to true in each envelope

transmitted to the CPE until the ACS again wishes to allow requests from the CPE. The

ACS MUST allow CPE requests before completion of a session (this MAY be done

either explicitly via the HoldRequests header or implicitly by sending an empty HTTP

response).

3.7.2.3 Outgoing Requests

While in a session (after the session was successfully initiated, but before the session

termination criteria described in 3.7.2.4 have been met), if the ACS has one or more

requests to send to the CPE and the most recent HTTP POST from the CPE did not

contain a SOAP request, the ACS MUST send one of these requests in the next HTTP

response.

Otherwise, while in a session, if the ACS has no requests to send to the CPE and the most

recent HTTP POST from the CPE did not contain a SOAP request, the ACS MUST send

an empty HTTP response.

Table 8 summarizes what the ACS MUST send to the CPE as long as the session is in

progress (after the session was successfully initiated, but before the session termination

criteria described in 3.7.2.4 have been met).

Table 8 – ACS Message Transmission Constraints

 CPE request outstanding No CPE request outstanding

ACS requests pending Response Request

No ACS requests pending Response Empty HTTP response

3.7.2.4 Session Termination

Since the CPE is driving the HTTP connection to the ACS, only the CPE is responsible

for connection initiation and teardown.

The ACS MUST consider the session terminated when all of the following conditions are

met:

1) The CPE has no further requests to send the ACS. The ACS concludes this if and

only if it has received an empty HTTP POST from the CPE while HoldRequests

is false.

2) The ACS has no further requests to send the CPE and the most recent HTTP

response the ACS sent to the CPE was empty (which indicates to the CPE that the

ACS has no further requests).

3) The ACS has sent all outstanding response messages to the CPE resulting from

prior requests.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 64 of 190

4) The ACS has received all outstanding response messages from the CPE.

If all of the above criteria have been met before the ACS has sent its final HTTP

response, the final HTTP response from the ACS MUST be empty.

If the above criteria have not all been met, but the ACS has not received an HTTP POST

from a given CPE within a locally defined timeout of not less than 30 seconds, it MAY

consider the session terminated. In this case, the ACS MAY attempt to reestablish a

session by performing a Connection Request (see Section 3.2.1.2).

If the ACS receives an HTTP POST from the CPE for which the XML is not well-

formed, for which the SOAP structure is deemed invalid, or that contains a SOAP fault

that is not in the form specified in Section 3.5, the ACS MUST respond to the CPE with

an HTTP 400 status code (Bad Request), and MUST consider the session to have

terminated unsuccessfully. This fault response MUST NOT contain any SOAP content,

but MAY contain human-readable text that further explains the nature of the fault.

If the ACS receives a request associated with a session that it considers expired, or if the

ACS determines that some other protocol violation has occurred, or for other reasons at

the discretion of the ACS
19

, the ACS MAY cause a session to terminate unsuccessfully

by responding to the CPE with an HTTP 400 status code (Bad Request). This HTTP

response MUST NOT contain any SOAP content, but MAY contain human readable-text

that further explains the nature of the fault.

If the ACS receives a SOAP fault response from the CPE, as defined in Section 3.5, the

ACS MUST interpret any unrecognized fault code between 9000 and 9799 (inclusive) the

same as 9001 (Request denied), and MAY choose among the following actions:

 The ACS MAY force the unsuccessful termination of the session. To do this, the

ACS MUST respond to the CPE with an HTTP 400 status code (Bad Request). This

HTTP response MUST NOT contain any SOAP content, but MAY contain human

readable-text that further explains the nature of the fault. This will result in the CPE

retrying the session.

 The ACS MAY attempt to terminate the session successfully, in which case the CPE

will not attempt to retry the session. To do this, the ACS would send no more

requests to the CPE, and would follow the rules defined above to determine when the

session terminates.

 The ACS MAY continue with the session, sending additional requests to the CPE.

19 With the exception that reception of a SOAP request to invoke an unsupported RPC method MUST result in a

SOAP-layer fault response with a fault code indicating ―Method not supported‖ (fault code 8000).

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 65 of 190

3.7.3 Transaction Examples

In the example shown in Figure 3, the ACS first reads a set of Parameter values, and

based on the result, sets some Parameter values.

Figure 3 – Transaction Session Example

CPE ACS
Open connection

SSL initiation

HTTP post

HTTP response

Inform request

Inform response

HTTP post

GetParameterValues response

HTTP response

SetParameterValues request

HTTP post

SetParameterValues response

Close connection

HTTP response (empty)

HTTP post (empty)

HTTP response

GetParameterValues request

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 66 of 190

In the example shown in Figure 4, the ACS first initiates a file download, and the CPE

sends a TransferComplete later in the same session. Note that this scenario could occur

only if the file download is very short and the CPE is capable of performing it in parallel

with the ongoing CPE WAN Management Protocol session (which a CPE is not required

to do). To allow this possibility, the ACS sets HoldRequests equal to true until it has

completed sending requests to the CPE.

Figure 4 – Example with the ACS using HoldRequests equal true

CPE ACS
Open connection

SSL initiation

HTTP post

HTTP response

Inform request

Inform response (HoldRequests = true)

HTTP post

Download response (status = 1)

HTTP response (empty)

HTTP post

TransferComplete request

Close connection

HTTP response

HTTP post (empty)

HTTP response

Download request (HoldRequests = true)

HTTP post (empty)

HTTP response (empty)

TransferComplete response

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 67 of 190

Normative References

The following documents are referenced by this specification. Where the protocol

defined in this specification depends on a referenced document, support for all required

components of the referenced document is implied unless otherwise specified.

The following references are associated with document conventions or context for this

specification, but are not associated with requirements of the CPE WAN Management

Protocol itself.

[1] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels,

http://www.ietf.org/rfc/rfc2119.txt

[2] TR-046, Auto-Configuration Architecture & Framework, Broadband Forum

Technical Report

[3] TR-062, Auto-Configuration for the Connection Between the DSL Broadband

Network Termination (B-NT) and the Network using ATM, Broadband Forum

Technical Report

[4] TR-044, Auto-Configuration for Basic Internet (IP-based) Services, Broadband

Forum Technical Report

The following references are associated with required components of the CPE WAN

Management Protocol.

[5] RFC 1034, Domain names – concepts and facilities,

http://www.ietf.org/rfc/rfc1034.txt

[6] RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1,

http://www.ietf.org/rfc/rfc2616.txt

[7] RFC 2617, HTTP Authentication: Basic and Digest Access Authentication,

http://www.ietf.org/rfc/rfc2617.txt

[8] RFC 2965, HTTP State Management Mechanism, http://www.ietf.org/rfc/rfc2965.txt

[9] Simple Object Access Protocol (SOAP) 1.1, http://www.w3.org/TR/2000/NOTE-

SOAP-20000508

[10] Organizationally Unique Identifiers (OUIs), http://standards.ieee.org/faqs/OUI.html

[11] RFC 5246, The Transport Layer Security (TLS) Protocol, Version 1.2,

http://www.ietf.org/rfc/rfc5246.txt

[12] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax,

http://www.ietf.org/rfc/rfc3986.txt

[13] TR-106 Amendment 6, Data Model Template for TR-069-Enabled Devices,

Broadband Forum Technical Report

The following references are associated with optional or recommended components of

the CPE WAN Management Protocol.

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2965.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://standards.ieee.org/faqs/OUI.html
http://www.ietf.org/rfc/rfc54246.txt
http://www.ietf.org/rfc/rfc3986.txt

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 68 of 190

[14] RFC 2132, DHCP Options and BOOTP Vendor Extensions,

http://www.ietf.org/rfc/rfc2132.txt

[15] XML-Signature Syntax and Processing, http://www.w3.org/2000/09/xmldsig

[16] PKCS #7, Cryptographic Message Syntax Standard,

http://www.rsasecurity.com/rsalabs/pkcs/pkcs-7/index.html or

http://www.ietf.org/rfc/rfc2315.txt

[17] Port Numbers, http://www.iana.org/assignments/port-numbers

[18] IANA Private Enterprise Numbers registry,

http://www.iana.org/assignments/enterprise-numbers

[19] RFC 2104, HMAC: Keyed-Hashing for Message Authentication,

http://www.ietf.org/rfc/rfc2104.txt

[20] RFC 2131, Dynamic Host Configuration Protocol,

http://www.ietf.org/rfc/rfc2131.txt

[21] RFC 3489, STUN - Simple Traversal of User Datagram Protocol (UDP) Through

Network Address Translators (NATs), http://www.ietf.org/rfc/rfc3489.txt

[22] RFC 3925, Vendor-Identifying Vendor Options for Dynamic Host Configuration

Protocol version 4 (DHCPv4), http://www.ietf.org/rfc/rfc3925.txt

[23] HTML 4.01 Specification, http://www.w3.org/TR/html4

[24] TR-098 Amendment 2, Internet Gateway Device Data Model for TR-069,

Broadband Forum Technical Report

[25] TR-104, Provisioning Parameters for VoIP CPE, Broadband Forum Technical

Report

[26] TR-135, Data Model for a TR-069 Enabled STB, Broadband Forum Technical

Report

[27] TR-140 Issue 1.1, TR-069 Data Model for Storage Service Enabled Devices,

Broadband Forum Technical Report

[28] TR-143 Corrigendum 2, Enabling Network Throughput Performance Tests and

Statistical Monitoring, Broadband Forum Technical Report

[29] TR-157 Amendment 3, Component Objects for CWMP, Broadband Forum

Technical Report

[30] TR-196, Femto Access Point Service Data Model, Broadband Forum Technical

Report

[31] TR-181 Issue 1, Device Data Model for TR-069, Broadband Forum Technical

Report

[32] TR-181 Issue 2, Device Data Model for TR-069, Broadband Forum Technical

Report

[33] RFC 5389, Session Traversal Utilities for NAT (STUN),

http://www.ietf.org/rfc/rfc5389.txt

http://www.ietf.org/rfc/rfc2132.txt
http://www.w3.org/2000/09/xmldsig
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-7/index.html
http://www.ietf.org/rfc/rfc2315.txt
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/enterprise-numbers
http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc3489.txt
http://www.ietf.org/rfc/rfc3925.txt
http://www.w3.org/TR/html4
http://www.ietf.org/rfc/rfc5389.txt

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 69 of 190

[34] RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace,

http://www.ietf.org/rfc/rfc4122.txt

[35] RFC 3315, Dynamic Host Configuration Protocol for IPv6 (DHCPv6),

http://www.ietf.org/rfc/rfc3315.txt

[36] IEEE 802a, IEEE Standard for Local and Metropolitan Area Networks: Overview

and Architecture - Amendment 1: Ethertypes for Prototype and Vendor-Specific

Protocol Development.

http://www.ietf.org/rfc/rfc4122.txt
http://www.ietf.org/rfc/rfc3315.txt

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 70 of 190

Annex A. RPC Methods

A.1 Introduction

In the CPE WAN Management Protocol, a remote procedure call mechanism is used for

bi-directional communication between a CPE device and an Auto-configuration Server

(ACS). This Annex specifies the specific procedure calls (methods). This includes both

methods initiated by an ACS and sent to a CPE, as well as methods initiated by a CPE

and sent to an ACS.

This specification is intended to be independent of the syntax used to encode the defined

RPC methods. The particular encoding syntax to be used in the context of the CPE WAN

Management Protocol is defined in Section 3.5.

A.2 RPC Method Usage

A.2.1 Data Types

The RPC methods defined in this specification make use of a limited subset of the default

SOAP data types [9]. The complete set of types utilized in this specification along with

the notation used to represent these types is listed in Table 9.

Table 9 – Data types

Type Description

string For strings listed in this specification, a maximum allowed length can be listed using the form string(N),
where N is the maximum string length in characters.

For all strings a maximum length is either explicitly indicated or implied by the size of the elements
composing the string. For strings in which the content is an enumeration, the longest enumerated
value determines the maximum length. If a string does not have an explicitly indicated maximum
length or is not an enumeration, the default maximum is 16 characters. Action arguments containing
strings longer than the specified maximum MAY result in an “Invalid arguments” error response.

int Integer in the range –2147483648 to +2147483647, inclusive.

For some int types listed, a value range is given using the form int[Min:Max], where the Min and Max
values are inclusive. If either Min or Max are missing, this indicates no limit.

unsignedInt Unsigned integer in the range 0 to 4294967295, inclusive.

For some unsignedInt types listed, a value range is given using the form unsignedInt[Min:Max], where
the Min and Max values are inclusive. If either Min or Max are missing, this indicates no limit.

boolean Boolean, where the allowed values are “0”, “1”, “true”, and “false”. The values “1” and “true” are
considered interchangeable, where both equivalently represent the logical value true. Similarly, the
values “0” and “false” are considered interchangeable, where both equivalently represent the logical
value false.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 71 of 190

Type Description

dateTime The subset of the ISO 8601 date-time format defined by the SOAP dateTime type.

All times MUST be expressed in UTC (Universal Coordinated Time) unless explicitly stated otherwise
in the definition of a variable of this type.

If absolute time is not available to the CPE, it SHOULD instead indicate the relative time since boot,
where the boot time is assumed to be the beginning of the first day of January of year 1, or
0001-01-01T00:00:00. For example, 2 days, 3 hours, 4 minutes and 5 seconds since boot would be
expressed as 0001-01-03T03:04:05. Relative time since boot MUST be expressed using an
untimezoned representation. Any untimezoned value with a year value less than 1000 MUST be
interpreted as a relative time since boot.

If the time is unknown or not applicable, the following value representing “Unknown Time” MUST be
used: 0001-01-01T00:00:00Z.

Any dateTime value other than one expressing relative time since boot (as described above) MUST
use timezoned representation (that is, it MUST include a timezone suffix).

base64 Base64 encoded binary.

A maximum allowed length can be listed using the form base64(N), where N is the maximum length in
characters after Base64 encoding.

anySimpleType The value of an element defined to be of type “anySimpleType” MAY be of any simple data type,
including (but not limited to) any of the other types listed in this table.

Following the SOAP specification [9], elements specified as being of type “anySimpleType” MUST
include a type attribute to indicate the actual type of the element. For example:

<ParameterValueStruct>

 <Name>InternetGatewayDevice.ProvisioningCode</Name>

 <Value xsi:type="xsd:string">code12345</Value>

</ParameterValueStruct>

The namespaces xsi and xsd used above are as defined in [9].

The methods used in this specification also make use of structures and arrays (in some

cases containing mixed types). Array elements are indicated with square brackets after

the data type. If specified, the maximum length of the array is indicated within the

brackets. If the maximum length is not specified, unless otherwise indicated, there is no

fixed requirement on the number of elements the recipient will be able to accommodate.

A request with an array too large for the recipient to accommodate SHOULD result in the

―Resources exceeded‖ fault code. Unless otherwise specified, the order of items in an

array MUST NOT have any effect on the interpretation of the contents of the array.

A.2.2 Instance Identifiers

In some cases, where multiple instances of an Object can occur, the placeholder node

name ―{i}‖ is shown. In actual use, this placeholder is to be replaced by an Instance

Identifier.

An Instance Identifier is a value that uniquely identifies an instance within a Multi-

Instance Object.

An Instance Identifier lifespan is the same as that of its addressed Object instance.

Two types of Instance Identifiers are available: Instance Number and Instance Alias.

A.2.2.1 Instance Number Identifier

The Instance Number identifier allows a Parameter or sub-object within an Object to be

referenced by using this Instance Number in the Path Name. The Instance Number

assigned by the CPE is arbitrary and Instance Numbers assigned by sequential calls need

not be consecutive.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 72 of 190

The CPE SHOULD NOT assign an Instance Number that has been used for a previously

deleted Object instance. The CPE SHOULD exhaust the full space of integer values for a

given Object before re-using Instance Numbers.

Once an Object instance is created, the assigned Instance Numbers MUST persist

unchanged until the Object is subsequently deleted (either by the ACS or by a third

party). This implies that the Instance Number MUST persist across reboots of the CPE,

and that the CPE MUST NOT allow the Instance Number of an existing Object instance

to be modified by a third-party entity.

The Instance Number identifier MUST be supported by the CPE.

An Instance Number is expressed as a positive integer (>=1), for example:

 Device.Services.ABCService.1

A.2.2.2 Instance Alias Identifier

This is the Instance Identifier used by the OPTIONAL Alias-Based Addressing

Mechanism (see Section 3.6.1). When the Alias-Based Addressing Mechanism is

supported, the Path Names within RPC arguments MAY contain Instance Aliases.

An Instance Alias is expressed as a string surrounded in square brackets, for example:

 Device.Services.ABCService.[a]

The square brackets are the notation used to distinguish an Instance Alias from an

Instance Number.

The string contained between the square brackets is the value of the addressed Object

instance‘s Alias Parameter (described in Section 3.8/TR-106 [13]). The Instance Alias

MUST always be unique within its parent Object and MUST never be empty.

An Instance Alias can be read via its addressed Object instance‘s Alias Parameter.

An Instance Alias can be changed by modifying its addressed Object instance‘s Alias

Parameter.

A.2.3 Other Requirements

Any message that is sent or received whose arguments do not adhere to the normative

CWMP XSD as defined in A.6 MUST generate an error response.

Future versions of this specification MUST NOT alter the RPC method signatures

defined in this Annex. Any changes needed in a future version MUST result only in new

RPC methods with distinct names being defined.

A.3 Baseline RPC Messages

A.3.1 Generic Methods

The methods listed in this Section are REQUIRED to be supported on both CPE devices

and ACSs. Either a CPE or ACS MAY call these methods.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 73 of 190

A.3.1.1 GetRPCMethods

This method MAY be used by a CPE or ACS to discover the set of methods supported by

the ACS or CPE it is in communication with. This list MUST include all the supported

methods, both standard methods (those defined in this specification or a subsequent

version) and vendor-specific methods. The receiver of the response MUST ignore any

unrecognized methods.

Vendor-specific methods MUST be in the form X_<VENDOR>_MethodName, where

<VENDOR> is a unique vendor identifier, which MAY be either an OUI or a domain

name. The OUI or domain name used for a given vendor-specific method MUST be one

that is assigned to the organization that defined this method (which is not necessarily the

same as the vendor of the CPE or ACS). An OUI is an organizationally unique identifier

as defined in [10], which MUST formatted as a 6 hexadecimal-digit OUI

(organizationally unique identifier), with all upper-case letters and any leading zeros

included. A domain name MUST be upper case with each dot (―.‖) replaced with a

hyphen or underscore. Examples: X_012345_MyMethod, X_ACME_COM_MyMethod.

The calling arguments for this method are defined in Table 10. The arguments in the

response are defined in Table 11.

Table 10 – GetRPCMethods arguments

Argument Type Description

- void This method has no calling arguments.

Table 11 – GetRPCMethodsResponse arguments

Argument Type Description

MethodList string(64)[] Array of strings containing the names of each of the RPC methods the recipient supports.
The list of methods returned by an ACS MUST always include “Inform”.

For example, a CPE implementing only the baseline methods defined in this version of
the specification would return the following list when requested by an ACS:

"GetRPCMethods"

"SetParameterValues"

"GetParameterValues"

"GetParameterNames"

“SetParameterAttributes”

“GetParameterAttributes”

“AddObject”

“DeleteObject”

“Reboot”

“Download”

As another example, an ACS implementing only the baseline methods defined in this
version of the specification would return the following list when requested by a CPE:

“Inform”

"GetRPCMethods"

“TransferComplete”

The following fault codes are defined for this method for response from a CPE: 9001,

9002.

The following fault codes are defined for this method for response from an ACS: 8001,

8002, 8005.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 74 of 190

A.3.2 CPE Methods

The methods listed in this Section are defined to be supported on a CPE device. Only an

ACS can call these methods.

A.3.2.1 SetParameterValues

This method MAY be used by an ACS to modify the value of one or more CPE

Parameters.

The calling arguments for this method are defined in Table 12. The arguments in the

response are defined in Table 13.

Table 12 – SetParameterValues arguments

Argument Type Description

ParameterList ParameterValueStruct[] Array of name-value pairs as specified in Table 14. For each name-
value pair, the CPE is instructed to set the Parameter specified by the
name to the corresponding value.

This array MUST NOT contain more than one entry with the same
Parameter name. If a given Parameter appears in this array more than
once, the CPE MUST respond with fault 9003 (Invalid arguments).

If the length of this array is zero, then the CPE MUST set the
ParameterKey to the value specified by the ParameterKey argument,
but MUST NOT set any other Parameter values.

ParameterKey string(32) The value to set the ParameterKey Parameter. The CPE MUST set
ParameterKey to the value specified in this argument if and only if
SetParameterValues completes successfully. If SetParameterValues
does not complete successfully (implying that the Parameter value
changes requested did not take effect), the value of ParameterKey
MUST NOT be modified. ParameterKey provides the ACS a reliable
and extensible means to track changes made by the ACS. The value of
this argument is left to the discretion of the ACS, and MAY be left
empty.

Table 13 – SetParameterValuesResponse arguments

Argument Type Description

Status int[0:1] A successful response to this method returns an integer enumeration defined as follows:

0 = All Parameter changes have been validated and applied.

1 = All Parameter changes have been validated and committed, but some or all are not yet
applied (for example, if a reboot is required before the new values are applied).

If the CPE supports the OPTIONAL Alias-Based Addressing Mechanism (as defined in

Section 3.6.1 and described in Appendix II) and its

ManagementServer.AutoCreateInstances Parameter value is set to true, then the Auto-

Create Instance Mechanism is performed by the CPE as follows:

 For each Instance Alias identifier supplied in the Path Name that does not already

exist, the CPE MUST follow the rules in Section A.3.2.6 for automatically

creating the new Object instances.

Note: The CPE assigned Instance Number is not returned with the

SetParameterValuesResponse.

On successful receipt of a SetParameterValues RPC, the CPE MUST apply the changes

to all of the specified Parameters atomically. That is, either all of the value changes are

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 75 of 190

applied together, or none of the changes are applied at all. In the latter case, the CPE

MUST return a fault response indicating the reason for the failure to apply the changes.

The CPE MUST NOT apply any of the specified changes without applying all of them.

This requirement MUST hold even if the CPE experiences a crash during the process of

applying the changes. The order of Parameters listed in the ParameterList has no

significance
20

21

, meaning that the application of value changes to the CPE MUST be

independent of the order in which they are listed.

If the request is valid, it is strongly RECOMMENDED that the CPE apply the requested

changes prior to sending the SetParameterValues response. If it does so, the CPE MUST

set the value of Status in the response to 0 (zero), indicating that the changes have been

applied.

If the CPE requires the session to be terminated before applying some or all of the

Parameter values, the CPE MUST reply before all Parameter values have been applied,

and thus MUST set the value of Status in the response to 1
22

. In this case, the reply

MUST come only after all validation of the request has been completed and the new

values have been appropriately saved such that they will definitely be applied as soon as

physically possible after the session has terminated. Once the CPE issues the

SetParameterValues response, all changes associated with the corresponding request

(including the new ParameterKey) MUST be available for subsequent commands to

operate on, regardless of whether the changes have been applied or not. In particular, the

use of GetParameterValues to read a Parameter modified by an earlier

SetParameterValues MUST return the modified value, even if that value has not yet been

applied.

If the value of Status in the SetParameterValues response is 1, the requested changes

MUST be applied as soon as physically possible after the session has terminated, and no

later than the beginning of the next session. Note that if a CPE requires a reboot to cause

the changes to be applied, the CPE MUST initiate that reboot on its own after the

termination of the session. Because some CPE will not require a reboot in these

circumstances, an ACS SHOULD NOT call the Reboot method as a result of modifying

the CPE‘s configuration, since this would result in an unnecessary reboot. Note also that

if application of a configuration change by the CPE would result in a service disruption

(for example, if the CPE requires a reboot to apply the requested change), it is not the

responsibility of the CPE to avoid or delay such a disruption. To minimize the impact of

such a disruption, the ACS MAY delay requesting such a configuration change until an

appropriate time, but this is entirely at the ACS‘s discretion.

20 Modification of ManagementServer.AutoCreateInstances or ManagementServer.InstanceMode Parameter(s) will

have an undefined effect on Parameters within the same RPC command that are affected by the Auto-Create

Instance Mechanism. This is a result of the order of the Parameters processed in the RPC by the CPE having no

significance.
21 For a CPE that supports the Alias-Based Addressing Mechanism, the fact that the order of the Parameters in the

ParameterList has no significance means that the effect is undefined when a SetParameterValues RPC is used to

change the value of an Alias Parameter that is also within the same RPC, used in a Parameter name or Parameter

value that is a Path Name or a list of Path Names.
22 When modifying ManagementServer.AutoCreateInstances or ManagementServer.InstanceMode and the CPE returns

a committed response (status = 1), all subsequent commands affected by the Alias-Based Addressing Mechanism

within the same session will not reflect the updated mode change(s).

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 76 of 190

The use of the Status value is independent between successive SetParameterValues,

AddObject, or DeleteObject requests within the same session. The use of a Status value

of 1 in response to one request does not necessarily imply that subsequent requests in the

same session will also respond in the same way.

The ACS MAY set Parameter values in any combination or order of its choosing using

one or multiple SetParameterValues RPCs.

All modifications to a CPE‘s configuration resulting from use of the SetParameterValues

method MUST be retained across reboots of the CPE.

The ParameterValueStruct structure is defined in Table 14.

Table 14 – ParameterValueStruct definition

Name Type Description

Name string(256) This is the name of a Parameter. The CPE MUST treat
the Parameter name as case sensitive.

Value anySimpleType This is the value the Parameter is to be set.

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005,

9006, 9007 and 9008.

For any Path Name node in the SetParameterValues RPC that is referred to by an

Instance Number that does not exist, the CPE MUST return a fault response with Invalid

Parameter Name (9005) fault code.

When the OPTIONAL Alias-Based Addressing Mechanism is enabled and its

ManagementServer.AutoCreateInstances Parameter value is set to false, then the CPE

MUST return a fault response with Invalid Parameter Name (9005) fault code for any

Path Name node in the SetParameterValues RPC that is referred to by an Instance Alias

that does not exist.

If there is a fault due to one or more Parameters in error, the primary fault code indicated

for the overall fault response MUST be Invalid Arguments (9003). The fault response for

this method MUST include a SetParameterValuesFault element for each Parameter in

error.

The CPE MUST reject an attempt to set values using the SetParameterValues RPC that

would result in an invalid configuration, where an invalid configuration is defined as one

of the following:

 A Parameter value or combination of Parameter values that are explicitly prohibited

in the definition of the Data Model(s) supported by the CPE.

 A Parameter value or combination of Parameter values that are not supported by the

CPE.

In both of the above cases, the response from the CPE MUST include a

SetParameterValuesFault element for each such Parameter, indicating the Invalid

Parameter Value fault code (9007).

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 77 of 190

The CPE MUST NOT impose any additional configuration restrictions beyond the

exceptions described above and restrictions otherwise explicitly permitted or required by

the CPE WAN Management Protocol.

A.3.2.2 GetParameterValues

This method MAY be used by an ACS to obtain the value of one or more CPE

Parameters. The calling arguments for this method are defined in Table 15. The

arguments in the response are defined in Table 16.

Table 15 – GetParameterValues arguments

Argument Type Description

ParameterNames string(256)[] Array of strings, each representing the name of a requested Parameter.

If a Parameter name argument is given as a Partial Path Name, the request is to
be interpreted as a request to return all of the Parameters in the branch of the
naming hierarchy that shares the same prefix as the argument. A Partial Path
Name MUST end with a “.” (dot) after the last node name in the hierarchy. An
empty string indicates the top of the name hierarchy.

Below is an example of a full Parameter name:

InternetGatewayDevice.DeviceInfo.SerialNumber

Below is an example of a Partial Path Name:

InternetGatewayDevice.DeviceInfo.

Table 16 – GetParameterValuesResponse arguments

Argument Type Description

ParameterList ParameterValueStruct[] Array of name-value pairs, as specified in Table 14, containing the
name and value for each requested Parameter.

If multiple entries in the ParameterNames array in the
GetParameterValues request overlap such that there are multiple
requests for the same Parameter value, it is at the discretion of the CPE
whether or not to duplicate that Parameter in the response array. That
is, the CPE MAY either include that Parameter value only once in its
response, or it MAY include that Parameter value once for each
instance that it was requested.

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005.

If the fault is caused by one or more invalid Parameter names in the ParameterNames

array, the Invalid Parameter Name fault code (9005) MUST be used instead of the more

general Invalid Arguments fault code (9003). The value of a ParameterNames element

MUST be considered invalid if it does not exactly match either the name of a Parameter

currently present in the CPE‘s Data Model (if the ParameterNames element does not end

with a dot) or the name of an Object currently present in the CPE‘s Data Model (if

ParameterNames element ends with a dot).

A.3.2.3 GetParameterNames

This method MAY be used by an ACS to discover the Parameters accessible on a

particular CPE. The calling arguments for this method are defined in Table 17. The

arguments in the response are defined in Table 18.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 78 of 190

Table 17 – GetParameterNames arguments

Argument Type Description

ParameterPath string(256) A string containing either a complete Parameter name, or a Partial Path Name
representing a subset of the name hierarchy. An empty string indicates the top of
the name hierarchy. A Partial Path Name MUST end with a “.” (dot) after the last
node name in the hierarchy.

Below is an example of a full Parameter name:

InternetGatewayDevice.DeviceInfo.SerialNumber

Below is an example of a Partial Path Name:

InternetGatewayDevice.DeviceInfo.

NextLevel boolean If false, the response MUST contain the Parameter or Object whose name exactly
matches the ParameterPath argument, plus all Parameters and Objects that are
descendents of the Object given by the ParameterPath argument, if any (all levels
below the specified Object in the Object hierarchy). For example, if ParameterPath
were “InternetGatewayDevice.LANDevice.1.Hosts.”, the response would include the
following (if there were a single instance of Host with Instance Number “1”):

InternetGatewayDevice.LANDevice.1.Hosts.
InternetGatewayDevice.LANDevice.1.Hosts.HostNumberOfEntries
InternetGatewayDevice.LANDevice.1.Hosts.Host.
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.IPAddress
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.AddressSource
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.LeaseTimeRemaining
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.MACAddress
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.HostName
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.InterfaceType
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.Active

If true, the response MUST contain all Parameters and Objects that are next-level
children of the Object given by the ParameterPath argument, if any. For example, if
ParameterPath were “InternetGatewayDevice.LANDevice.1.Hosts.”, the response
would include the following:

InternetGatewayDevice.LANDevice.1.Hosts.HostNumberOfEntries
InternetGatewayDevice.LANDevice.1.Hosts.Host.

Or, if ParameterPath were empty, with NextLevel equal true, the response would list
only “InternetGatewayDevice.” (if the CPE is an Internet Gateway Device).

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 79 of 190

Table 18 – GetParameterNamesResponse arguments

Argument Type Description

ParameterList ParameterInfoStruct[] Array of structures, each containing the name and other information for a
Parameter or Object, as defined in Table 19.

When NextLevel is false, this list MUST contain the Parameter or Object
whose name exactly matches the ParameterPath argument, plus all
Parameters and Objects that are descendents of the Object given by the
ParameterPath argument, if any (all levels below the specified Object in

the Object hierarchy). If the ParameterPath argument is an empty

string, names of all Objects and Parameters accessible on the particular
CPE are returned.

When NextLevel is true, this list MUST contain all Parameters and Object
that are next-level children of the Object given by the ParameterPath
argument, if any.

For a Parameter, the Name returned in this structure MUST be a full Path
Name, ending with the name of the Parameter element. For an Object,
the Name returned in this structure MUST be a Partial Path Name, ending
with a dot.

This list MUST include any Objects that are currently empty. An empty
Object is one that contains no instances (for a Multi-Instance Object), no
child Objects, and no child Parameters.

If NextLevel is true and ParameterPath refers to an Object that is empty,
this array MUST contain zero entries.

The ParameterList MUST include only Parameters and Objects that are
actually implemented by the CPE. If a Parameter is listed, this implies
that a GetParameterValues for this Parameter would be expected to
succeed.

Table 19 – ParameterInfoStruct definition

Name Type Description

Name string(256) This is the full Path Name of a Parameter or a Partial Path
Name.

Writable boolean Whether or not the Parameter value can be overwritten
using the SetParameterValues method.

If Name is a Partial Path Name that refers to an Object,
this indicates whether or not AddObject can be used to
add new instances of this Object.

If Name is a Partial Path Name that refers to a particular
instance of a Multi-Instance Object, this indicates whether
or not DeleteObject can be used to remove this particular
instance.

This element MUST be true only if the corresponding
Parameter or Object as implemented in this CPE is
writable as described above. The value of this element
MUST reflect only the actual implementation rather than
whether or not the specification of the Parameter or Object
allows it to be writable.

The following fault codes are defined for this method: 9001, 9002, 9003, 9005.

If the fault is caused by an invalid ParameterPath value, the Invalid Parameter Name fault

code (9005) MUST be used instead of the more general Invalid Arguments fault code

(9003). A ParameterPath value MUST be considered invalid if it is not an empty string

and does not exactly match a Parameter or Object name currently present in the CPE‘s

Data Model. If NextLevel is true and ParameterPath is a Parameter name rather than a

Partial Path Name, the CPE MUST return a fault response with the Invalid Arguments

fault code (9003).

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 80 of 190

A.3.2.4 SetParameterAttributes

This method MAY be used by an ACS to modify attributes associated with one or more

CPE Parameter. The calling arguments for this method are defined in Table 20. The

arguments in the response are defined in Table 21.

On successful receipt of a SetParameterAttributes RPC, the CPE MUST apply the

changes to all of the specified Parameters immediately and atomically. That is, either all

of the attribute changes are applied together, or none of the changes are applied at all. In

the latter case, the CPE MUST return a fault response indicating the reason for the failure

to apply the changes. The CPE MUST NOT apply any of the specified changes without

applying all of them. This requirement MUST hold even if the CPE experiences a crash

during the process of applying the changes.

The ACS MAY set Parameter attributes in any combination or order of its choosing using

one or multiple SetParameterAttributes RPCs.

If there is more than one entry in the ParameterList array, and the SetParameterAttributes

request is successful as described above, the CPE MUST apply the attribute changes in

the order of the ParameterList array. That is, if multiple entries in the ParameterList

would result in modifying the same attribute of a given Parameter, the attribute value

specified later in the ParameterList array MUST overwrite the attribute value specified

earlier in the array. This behavior might seem to be inconsistent with that of

SetParameterValues, for which it is an error to specify the same Parameter name more

than once; this difference is because, unlike SetParameterValues, SetParameterAttributes

permits a mixture of full and Partial Paths to be specified.

All modifications to a CPE‘s configuration resulting from use of the

SetParameterAttributes method MUST be retained across reboots of the CPE.

Attributes are associated with actual Parameter instances. If the CPE supports the Alias-

Based Addressing Mechanism, when the alias of an instance is changed and an Attribute

has been set on a Parameter whose Parameter Path includes that instance, the CPE MUST

keep the attribute on the same actual Parameter after the alias change.

When a Parameter is deleted, its attributes MUST also be deleted. Note that this means

that if another Parameter with the same Path Name as a previously deleted Parameter is

created in the future, this new Parameter will not inherit attributes from the previously

deleted Parameter.

A CPE MUST NOT allow any entity other than the ACS to modify attributes of a

Parameter.

Table 20 – SetParameterAttributes arguments

Argument Type Description

ParameterList SetParameterAttributesStruct[] List of changes to be made to the attributes for a set of
Parameters. Each entry in this array is a SetParameter-
AttributesStruct as defined in Table 22.

As described above, the order of entries in this array is
significant.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 81 of 190

Table 21 – SetParameterAttributesResponse arguments

Argument Type Description

- void This method response has no arguments.

Table 22 – SetParameterAttributesStruct definition

Name Type Description

Name string(256) This is the name of a Parameter to apply the new
attributes. Alternatively, this MAY be a Partial Path
Name, indicating that the new attributes are to be
applied to all Parameters below this point in the
naming hierarchy. For such Parameters within Multi-
Instance Objects where the Instance Identifier is
below the specified point in the naming hierarchy, the
specified attribute values MUST only be applied within
instances that exist at the time this method is invoked.
A Partial Path Name MUST end with a “.” (dot) after
the last node name in the hierarchy. An empty string
indicates the top of the name hierarchy.

Below is an example of a full Parameter name:

InternetGatewayDevice.DeviceInfo.SerialNumber

Below is an example of a Partial Path Name:

 InternetGatewayDevice.DeviceInfo.

NotificationChange boolean If true, the value of Notification replaces the current
notification setting for this Parameter or group of
Parameters. If false, no change is made to the
notification setting.

Notification int[0:2] Indicates whether the CPE will include changed
values of the specified Parameter(s) in the Inform
message, and whether the CPE will initiate a session
to the ACS when the specified Parameter(s) change
in value. The following values are defined:

0 = Notification off. The CPE need not inform the
ACS of a change to the specified Parameter(s).

1 = Passive notification. Whenever the specified
Parameter value changes, the CPE MUST
include the new value in the ParameterList in the
Inform message that is sent the next time a
session is established to the ACS.

If the CPE has rebooted, or the URL of the ACS
has changed since the last session, the CPE
MAY choose not to include the list of changed
Parameters in the first session established with
the new ACS.

2 = Active notification. Whenever the specified
Parameter value changes, the CPE MUST
initiate a session to the ACS, and include the
new value in the ParameterList in the associated
Inform message.

For Parameters defined in the corresponding Data
Model as requiring Forced Active Notification, the
value of the Notification attribute is irrelevant and an
attempt to set it to a value other than 2 will be ignored.

Whenever a Parameter change is sent in the Inform
message due to a non-zero Notification setting, the
Event code "4 VALUE CHANGE" MUST be included
in the list of Events.

Note that if the CPE deletes an Object containing
Parameters for which Notification is enabled (active or
passive), this MUST NOT be considered a value-
change for the purpose of Notification.

By default, prior to any changes to this attribute by an

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 82 of 190

Name Type Description

ACS, its value SHOULD be 0 (Notification off) unless
otherwise specified in the appropriate Data Model
definition.

The CPE MAY provide no support for Active
Notification on a Parameter deemed inappropriate for
Active Notification. A Parameter is deemed
inappropriate for Active Notification if and only if that
Parameter is explicitly defined as such in the definition
of the corresponding Data Model. Parameters that
might be deemed inappropriate for Active Notification
include Parameters that change frequently, such as
statistics. A CPE MUST accept a request to enable
Passive Notification for any Parameter.

Note that if a CPE implementation does not allow a
particular Parameter value to change in a manner that
would result in a Notification (e.g., a capability flag
that could only change as a result of a firmware
update that requires a reboot, or a writeable
Parameter that can only be modified via the CPE
WAN Management Protocol), then support for
Notification for this Parameter involves no more than
keeping track of the value of its Notification attribute.
For such a Parameter, the CPE implementation need
not incorporate a mechanism to detect value changes
nor to initiate Notifications based on such changes.

AccessListChange boolean If true, the value of AccessList replaces the current
access list for this Parameter or group of Parameters.
If false, no change is made to the access list.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 83 of 190

Name Type Description

AccessList string(64)[] Array of zero or more entities for which write access
to the specified Parameter(s) is granted. If there are
no entries, write access is only allowed from an ACS.
At present, only one type of entity is defined that can
be included in this list:

“Subscriber” Indicates write access by an
interface controlled on the
subscriber LAN. Includes any
and all such LAN-side
mechanisms, which MAY include
but are not limited to TR-064
(LAN-side DSL CPE
Configuration Protocol), UPnP,
the device’s user interface, client-
side telnet, and client-side
SNMP.

Currently, access restrictions for other WAN-side
configuration protocols is not specified.

The ACS MAY further specify management entities in
the ACL using a vendor-specific prefix. If such
entities are specified by vendors, they MUST be
preceded by X_<VENDOR>_and follow the syntax for
vendor extensions for Parameter names defined in
[13].

The CPE MUST correctly interpret the value
“Subscriber” as described above, but MUST ignore
any other individual values in this array that it does
not understand.

By default, prior to any changes to the access list by
an ACS, access SHOULD be granted to all entities
specified above.

The TR-069 ACS always has write access to all
writeable Parameters regardless of being on the
access list. Other entities have write access only if
they appear on the access list. An entity that is
restricted from write access to a certain Parameter
MUST NOT be allowed to change Parameter values
and MUST NOT be allowed to delete Objects within
which the Parameter is contained. The TR-069
access control mechanism does not prevent any
entity from creating new Object instances.

The CPE MUST accept changes to the AccessList for
any Parameter even if that Parameter is read-only
and its value cannot be modified by any management
entity. For such read-only Parameters, the CPE
MUST store the modified AccessList value and return
it when requested via GetParameterAttributes, but
MAY otherwise ignore this value.

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005,

9009.

If the fault is caused by an invalid Parameter name, the Invalid Parameter Name fault

code (9005) MUST be used instead of the more general Invalid Arguments fault code

(9003). If the CPE does not support Active Notifications on a Parameter deemed

inappropriate (as described above), it MUST reject an attempt to enable Active

Notification for that Parameter by responding with fault 9009 (Notification request

rejected). If Active notification is being enabled for Parameter(s) specified via a Partial

Path Name and the CPE does not support Active notification for one or more such

Parameters deemed inappropriate below this point in the naming hierarchy, the CPE

MUST reject the request and respond with fault code 9009 (Notification request rejected).

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 84 of 190

A.3.2.5 GetParameterAttributes

This method MAY be used by an ACS to read the attributes associated with one or more

CPE Parameter. The calling arguments for this method are defined in Table 23. The

arguments in the response are defined in Table 24.

Table 23 – GetParameterAttributes arguments

Argument Type Description

ParameterNames string(256)[] Array of strings, each representing the name of a requested Parameter.

If a Parameter name argument is given as a Partial Path Name, the request is to
be interpreted as a request to return all of the Parameters in the branch of the
naming hierarchy that shares the same prefix as the argument. A Partial Path
Name MUST end with a “.” (dot) after the last node name in the hierarchy. An
empty string indicates the top of the name hierarchy.

Below is an example of a full Parameter name:

InternetGatewayDevice.DeviceInfo.SerialNumber

Below is an example of a Partial Path Name:

InternetGatewayDevice.DeviceInfo.

Table 24 – GetParameterAttributesResponse arguments

Argument Type Description

ParameterList ParameterAttributeStruct[] List of access control information for the specified set of Parameters.
Each entry in this array is a ParameterAttributeStruct as defined in
Table 25.

If the ParameterNames argument in the request was a Partial Path
Name, and if there are no Parameters within the Object represented
by that Partial Path Name (at any level below), the ParameterList
MUST be empty, and this MUST NOT cause an error response.

Table 25 – ParameterAttributeStruct definition

Name Type Description

Name string(256) This is the name of a Parameter to which the
attributes are given. The Name MUST be a full
Parameter name, and MUST NOT be a Partial Path
Name.

Notification int[0:2] Indicates whether the CPE will include changed
values of the specified Parameter(s) in the Inform
message, and whether the CPE will initiate a
session to the ACS when the specified
Parameter(s) change in value. The following values
are defined:

0 = Notification off. The CPE need not inform the
ACS of a change to the specified Parameter(s).

1 = Passive notification. Whenever the specified
Parameter value changes, the CPE MUST
include the new value in the ParameterList in
the Inform message that is sent the next time a
session is established to the ACS.

2 = Active notification. Whenever the specified
Parameter value changes, the CPE MUST
initiate a session to the ACS, and include the
new value in the ParameterList in the
associated Inform message.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 85 of 190

Name Type Description

AccessList string(64)[] Array of zero or more entities for which write access
to the specified Parameter(s) is granted. If there
are no entries, write access is only allowed from an
ACS. At present, only one type of entity is defined
that can be included in this list:

“Subscriber” Indicates write access by an
interface controlled on the
subscriber LAN. Includes any
and all such LAN-side
mechanisms, which MAY
include but are not limited to
TR-064 (LAN-side DSL CPE
Configuration Protocol), UPnP,
the device’s user interface,
client-side telnet, and client-
side SNMP.

The list MAY include vendor-specific entities, which
MUST be preceded by X_<VENDOR>_and follow
the syntax for vendor extensions for Parameter
names defined in [13].

The ACS MAY ignore any individual items in this
array that it does not understand.

By default, prior to any changes to the access list by
an ACS, the AccessList attribute for all Parameters
SHOULD include all entities that the CPE supports,
indicating access granted to all of these entities.

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005.

If the fault is caused by an invalid Parameter name, the Invalid Parameter Name fault

code (9005) MUST be used instead of the more general Invalid Arguments fault code

(9003).

A.3.2.6 AddObject

This method MAY be used by the ACS to create a new instance of a Multi-Instance

Object. The method call takes as an argument the Path Name of the collection of Objects

for which a new instance is to be created. For example:

Top.Group.Object.

This Path Name does not include an Instance Number for the Object to be created. That

Instance Number is assigned by the CPE and returned in the response. Once assigned the

Instance Number of an Object cannot be changed and persists until the Object is deleted

using the DeleteObject method. After creation, Parameters or sub-objects within the

Object are referenced by the Path Name appended with the Instance Identifier. For

example, if the AddObject method returned an Instance Number of 2, a Parameter within

this instance can then be referred to by the path:

Top.Group.Object.2.Parameter

If the CPE supports the Alias-Based Addressing Mechanism (as defined in Section 3.6.1)

then the following are additional requirements:

 The Path Name MAY be followed by an Instance Alias (as defined in Section

A.2.2.2) enclosed between square brackets.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 86 of 190

 If the Path Name ends with an Instance Alias (enclosed between square brackets)

the CPE MUST assign the Instance Alias to the newly created Object instance.

 If the Path Name does not end with an Instance Alias, the CPE MUST assign the

newly created Object instance a unique Instance Alias using a ‗cpe-‗ prefix.

 Once assigned, an Instance Alias MUST only be changed by the ACS and it

MUST persist until the Object is deleted.

For example, to add an Object instance with its Instance Alias set to ―a‖:

 Top.Group.Object.[a].

A new Object instance with an Instance Alias ―a‖ will be created. After creation of an

Object instance with an Instance Alias, any Parameter within the created Object

instance can then be referred to by a Path Name such as:

 Top.Group.Object.[a].Parameter

On creation of an Object using this method, the Parameters contained within the Object

MUST be set to their default values and the associated attributes MUST be set to the

following:

 Notification is set to zero (notification off) unless otherwise specified in the

appropriate Data Model definition.

 AccessList includes all defined entities.

The calling arguments for this method are defined in Table 26. The arguments in the

response are defined in Table 27.

Addition of an Object MUST be done atomically. That is, either all of the Parameters

and sub-objects are added together, or none are added. In the latter case the CPE MUST

return a fault response indicating the reason for the failure to add the Object. The CPE

MUST NOT add any contained Parameters or sub-objects as a result of this method call

without adding all of them (all Parameters and sub-objects supported by that CPE). This

requirement MUST hold even if the CPE experiences a crash during the process of

performing the addition.

If the request is valid, it is strongly RECOMMENDED that the CPE apply the Object

creation prior to sending the AddObject response. If it does so, the CPE MUST set the

value of Status in the response to 0 (zero), indicating that the Object creation has been

applied.

If the CPE requires the session to be terminated before applying the Object creation, the

CPE MUST reply before the Object creation has been applied, and thus MUST set the

value of Status in the response to 1. In this case, the reply MUST come only after all

validation of the request has been completed and the Object creation request has been

appropriately saved such that it will definitely be applied as soon as physically possible

after the session has terminated. Once the CPE issues the AddObject response, all

changes associated with the corresponding request (including the new ParameterKey)

MUST be available for subsequent commands to operate on, regardless of whether the

changes have been applied or not. In particular, even if the Object creation has not yet

been applied, the CPE MUST allow the use of SetParameterValues, GetParameterValues,

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 87 of 190

SetParameterAttributes, and GetParameterAttributes to operate on Parameters within the

newly created Object, as well as the use of AddObject to create a sub-object within the

newly created Object, and DeleteObject to delete either a sub-object or the newly created

Object itself.

If the value of Status in the AddObject response is 1, the requested Object creation

MUST be applied as soon as physically possible after the session has terminated, and no

later than the beginning of the next session. Note that if a CPE requires a reboot to cause

the Object creation to be applied, the CPE MUST initiate that reboot on its own after the

termination of the session. Because some CPE will not require a reboot in these

circumstances, an ACS SHOULD NOT call the Reboot method as a result of modifying

the CPE‘s configuration, since this would result in an unnecessary reboot. Note also that

if application of a configuration change by the CPE would result in a service disruption

(for example, if the CPE requires a reboot to apply the requested change), it is not the

responsibility of the CPE to avoid or delay such a disruption. To minimize the impact of

such a disruption, the ACS MAY delay requesting such a configuration change until an

appropriate time, but this is entirely at the ACS‘s discretion.

The use of the Status value is independent between successive SetParameterValues,

AddObject, or DeleteObject requests within the same session. The use of a Status value

of 1 in response to one request does not necessarily imply that subsequent requests in the

same session will also respond in the same way.

All modifications to a CPE‘s configuration resulting from use of the AddObject method

MUST be retained across reboots of the CPE. This MUST include the values of Object

Instance Identifiers.

Table 26 – AddObject arguments

Argument Type Description

ObjectName string(256) The Path Name of the collection of Objects for which a new instance is to be created.
The Path Name MUST end with a “.” (dot) after the last node in the hierarchical name
of the Object, or if CPE supports the Alias-Based Addressing Mechanism, it MAY end
with the requested Instance Alias name for the new Object enclosed between square
brackets and MUST end with a “.”.

ParameterKey string(32) The value to set the ParameterKey Parameter. The CPE MUST set ParameterKey to
the value specified in this argument if and only if AddObject completes successfully. If
AddObject does not complete successfully (implying that the requested Object did not
get added), the value of ParameterKey MUST NOT be modified. ParameterKey
provides the ACS a reliable and extensible means to track changes made by the ACS.
The value of this argument is left to the discretion of the ACS, and MAY be left empty.

Table 27 – AddObjectResponse arguments

Argument Type Description

InstanceNumber UnsignedInt[1:] The Instance Number of the newly created Object. Once created, a Parameter
or sub-object within this Object can be later referenced by using this Instance
Number Identifier (defined in Section A.2.2.1) in the Path Name. The Instance
Number assigned by the CPE is arbitrary and Instance Numbers assigned by
sequential calls to AddObject need not be consecutive.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 88 of 190

Argument Type Description

Status int[0:1] A successful response to this method returns an integer enumeration defined
as follows:

0 = The Object has been created.

1 = The Object creation has been validated and committed, but not yet applied
(for example, if a reboot is required before the new Object can be applied).

The following fault codes are defined for this method: 9001, 9002, 9003, 9004 and 9005.

If an AddObject request would result in exceeding the maximum number of such Objects

supported by the CPE, the CPE MUST return a fault response with the Resources

Exceeded (9004) fault code. If an AddObject request uses an Instance Alias and requests

a new Object instance and the Instance Alias already exists, the CPE MUST return a fault

response with ―Invalid Parameter Name‖ (9005) fault code.

A.3.2.7 DeleteObject

This method is used to remove a particular instance of an Object. This method call takes

as an argument the Path Name of the Object instance including the Instance Identifer.

For example:

Top.Group.Object.2.

If this method call is successful, the specified instance of this Object is subsequently

unavailable for access and the CPE MUST discard the state previously associated with all

Parameters (values and attributes) and sub-objects contained within this instance.

When an Object instance is deleted, the Instance Numbers associated with any other

instances of the same collection of Objects remain unchanged. Thus, the Instance

Numbers of Object instances in a collection might not be consecutive.

The calling arguments for this method are defined in Table 28. The arguments in the

response are defined in Table 29.

If the request is valid, it is strongly RECOMMENDED that the CPE apply the Object

deletion prior to sending the DeleteObject response. If it does so, the CPE MUST set the

value of Status in the response to 0 (zero), indicating that the Object deletion has been

applied.

If the CPE requires the session to be terminated before applying the Object deletion, the

CPE MUST reply before the Object deletion has been applied, and thus MUST set the

value of Status in the response to 1. In this case, the reply MUST come only after all

validation of the request has been completed and the Object deletion request has been

appropriately saved such that it will definitely be applied as soon as physically possible

after the session has terminated. Once the CPE issues the DeleteObject response, all

changes associated with the corresponding request (including the new ParameterKey)

MUST be available for subsequent commands to operate on, regardless of whether the

changes have been applied or not. In particular, the use of GetParameterNames and

GetParameterValues MUST indicate the absence of the deleted Object, and any attempt

to modify or read Parameters or sub-objects within the deleted Object MUST fail.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 89 of 190

If the value of Status in the DeleteObject response is 1, the requested Object deletion

MUST be applied as soon as physically possible after the session has terminated, and no

later than the beginning of the next session. Note that if a CPE requires a reboot to cause

the Object deletion to be applied, the CPE MUST initiate that reboot on its own after the

termination of the session. Because some CPE will not require a reboot in these

circumstances, an ACS SHOULD NOT call the Reboot method as a result of modifying

the CPE‘s configuration, since this would result in an unnecessary reboot. Note also that

if application of a configuration change by the CPE would result in a service disruption

(for example, if the CPE requires a reboot to apply the requested change), it is not the

responsibility of the CPE to avoid or delay such a disruption. To minimize the impact of

such a disruption, the ACS MAY delay requesting such a configuration change until an

appropriate time, but this is entirely at the ACS‘s discretion.

The use of the Status value is independent between successive SetParameterValues,

AddObject, or DeleteObject requests within the same session. The use of a Status value

of 1 in response to one request does not necessarily imply that subsequent requests in the

same session will also respond in the same way.

On deletion, all Parameters and sub-objects contained within this Object MUST be

removed atomically. That is, either all of the Parameters and sub-objects are removed

together, or none are removed at all. In the latter case, the CPE MUST return a fault

response indicating the reason for the failure to delete the Object. The CPE MUST NOT

remove any contained Parameters or sub-objects as a result of this method call without

removing all of them. This requirement MUST hold even if the CPE experiences a crash

during the process of performing the deletion.

All modifications to a CPE‘s configuration resulting from use of the DeleteObject

method MUST be retained across reboots of the CPE.

Table 28 – DeleteObject arguments

Argument Type Description

ObjectName string(256) The Path Name of the Object instance to be removed. The Path Name MUST end
with a “.” (dot) after the Instance Identifier of the Object.

ParameterKey string(32) The value to set the ParameterKey Parameter. The CPE MUST set ParameterKey to
the value specified in this argument if and only if DeleteObject completes successfully.
If DeleteObject does not complete successfully (implying that the requested Object did
not get deleted), the value of ParameterKey MUST NOT be modified. ParameterKey
provides the ACS a reliable and extensible means to track changes made by the ACS.
The value of this argument is left to the discretion of the ACS, and MAY be left empty.

Table 29 – DeleteObjectResponse arguments

Argument Type Description

Status int[0:1] A successful response to this method returns an integer enumeration defined as follows:

0 = The Object has been deleted.

1 = The Object deletion has been validated and committed, but not yet applied (for example, if a
reboot is required before the Object can be deleted).

The following fault codes are defined for this method: 9001, 9002, 9003, 9005.

If the fault is caused by an invalid ObjectName value, the Invalid Parameter Name fault

code (9005) MUST be used instead of the more general Invalid Arguments fault code

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 90 of 190

(9003). The ObjectName value MUST be considered invalid if it does not exactly match

the name of a single instance of a Multi-Instance Object currently present in the CPE‘s

Data Model.

A.3.2.8 Download

Note – The functionality provided by this method overlaps that of the ScheduleDownload method

[Section A.4.1.8]. Unlike ScheduleDownload, this method does not provide fine-grained control

over when the download can be performed and applied. Also, this method permits a file to be

downloaded and applied within the same session.

This method MAY be used by the ACS to cause the CPE to download a specified file

from the designated location. The calling arguments for this method are defined in Table

30. The arguments in the response are defined in Table 31.

When a download is initiated using this method, the CPE MUST indicate successful or

unsuccessful completion of the download using one of the following three means:

 A DownloadResponse with the Status argument having a value of zero (indicating

success), or a fault response to the Download request (indicating failure).

 A TransferComplete message sent later in the same session as the Download request

(indicating either success or failure). In this case, the Status argument in the

corresponding DownloadResponse MUST have a value of one.

 A TransferComplete message sent in a subsequent session (indicating either success

or failure). In this case, the Status argument in the corresponding DownloadResponse

MUST have a value of one.

Regardless of which means is used, the CPE MUST only indicate successful completion

of the download after the downloaded file has been both successfully transferred and

applied. While the criterion used to determine when a file has been successfully applied

is specific to the CPE‘s implementation, the CPE SHOULD consider a downloaded file

to be successfully applied only after the file is installed and in use as intended.

In the particular case that the downloaded file is a software image, the CPE MUST

consider the downloaded file to be successfully applied only after the new software image

is actually installed and operational. If the software image replaces the overall software

of the CPE (which would typically require a reboot to install and begin execution), the

SoftwareVersion represented in the Data Model MUST already reflect the updated

software image in the session in which the CPE sends a TransferComplete indicating

successful download.

If the CPE requires a reboot to apply the downloaded file, then the only appropriate

means of indicating successful completion is the third option listed above—a

TransferComplete message sent in a subsequent session.

If the file cannot be successfully downloaded or applied, the CPE MUST NOT attempt to

retry the file download on its own initiative, but instead MUST report the failure of the

download to the ACS using any of the three means listed above. Upon the ACS being

informed of the failure of a download, the ACS MAY subsequently attempt to reinitiate

the download by issuing a new Download request.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 91 of 190

If the CPE receives one or more Download or ScheduleDownload requests before

performing a previously requested download, the CPE MUST queue all requested

downloads and perform each of them as closely as possible to the requested time (based

on the value of the DelaySeconds argument and the time of the request). Queued

downloads MUST be retained across reboots of the CPE. The CPE MUST be able to

queue a minimum of three file transfers (downloads and uploads).

For each download performed, the CPE MUST send a distinct TransferComplete. Note

that the order in which a series of requested downloads will be performed might differ

from the order of the corresponding requests due to differing values of DelaySeconds.

For example, an ACS could request a download with DelaySeconds equal to one hour,

then five minutes later request a second download with DelaySeconds equal to one

minute. In this case, the CPE would perform the second download before the first.

All modifications to a CPE‘s configuration resulting from use of the Download method

MUST be retained across reboots of the CPE.

Table 30 – Download arguments

Argument Type Description

CommandKey string(32) The string the CPE uses to refer to a particular download. This argument is
referenced in the methods Inform, TransferComplete, GetQueuedTransfers,
GetAllQueuedTransfers and CancelTransfer.

The value of the CommandKey is entirely at the discretion of the ACS and MAY be
an empty string.

FileType string(64) An integer followed by a space followed by the file type description. Only the
following values are currently defined for the FileType argument:

"1 Firmware Upgrade Image"

"2 Web Content"

“3 Vendor Configuration File”

“4 Tone File” (see [25] Appendix B)

“5 Ringer File” (see [25] Appendix B)

The following format is defined to allow the unique definition of vendor-specific file
types:

"X <VENDOR> <Vendor-specific identifier>"

<VENDOR> is replaced by a unique vendor identifier, which MAY be either an
OUI or a domain name. The OUI or domain name used for a given vendor-
specific file type MUST be one that is assigned to the organization that defined
this method (which is not necessarily the same as the vendor of the CPE or ACS).
An OUI is an organizationally unique identifier as defined in [10], which MUST be
formatted as a 6 hexadecimal-digit OUI (organizationally unique identifier), with all
upper-case letters and any leading zeros included. A domain name MUST be
upper case with each dot (“.”) replaced with a hyphen or underscore.

If and only if the CPE supports downloading of firmware images using the
Download method, the CPE MUST support the "1 Firmware Upgrade Image"
FileType value. All other FileType values are OPTIONAL.

The FileType value of "2 Web Content" is intended to be used for downloading
files that contain only web content for a CPE’s web-based user interface. A CPE
that supports a web-based user interface and allows the content to be downloaded
from the ACS via the Download method as a distinct file containing only web
content SHOULD use the FileType value of "2 Web Content" when performing
such a download. A CPE that supports a web-based user interface and allows the
content to be downloaded from the ACS MAY instead include web content as part
of its firmware upgrade image, or use some other means to update the web
content in the CPE. Such a CPE need not support the FileType value of "2 Web
Content".

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 92 of 190

Argument Type Description

URL string(256) URL, as defined in [12], specifying the source file location. HTTP and HTTPS
transports MUST be supported. Other optional transports, as specified in Section
2.3.2, MAY be supported.

If the CPE receives multiple Download requests with the same source URL, the
CPE MUST perform each download as requested, and MUST NOT assume that
the content of the file to be downloaded is the same each time.

This URL MUST NOT include the “userinfo” component, as defined in [12].

Username string(256) Username to be used by the CPE to authenticate with the file server. This string is
set to the empty string if no authentication is required.

Password string(256) Password to be used by the CPE to authenticate with the file server. This string is
set to the empty string if no authentication is required.

FileSize unsignedInt The size of the file to be downloaded in bytes.

The FileSize argument is intended as a hint to the CPE, which the CPE MAY use
to determine if it has sufficient space for the file to be downloaded, or to prepare
space to accept the file.

The ACS MAY set this value to zero. The CPE MUST interpret a zero value to
mean that that the ACS has provided no information about the file size. In this
case, the CPE MUST attempt to proceed with the download under the
presumption that sufficient space is available, though during the course of
download, the CPE might determine otherwise.

The ACS SHOULD set the value of this Parameter to the exact size of the file to
be downloaded. If the value is non-zero, the CPE MAY reject the Download
request on the basis of insufficient space.

If the CPE attempts to proceed with the download based on the value of this
argument, but the actual file size differs from the value of this argument, this could
result in a failure of the download. However, the CPE MUST NOT cause the
download to fail solely because it determines that the value of this argument is
inaccurate.

TargetFileName string(256) The name of the file to be used on the target file system. This argument MAY be
left empty if the target file name can be extracted from the downloaded file itself,
or from the URL argument, or if no target file name is needed. If this argument is
specified, but the target file name is also indicated by another source (for example,
if it is extracted from the downloaded file itself), this argument MUST be ignored.
If the target file name is used, the downloaded file would replace any existing file
of the same name (whether or not the CPE archives the replaced file is a local
matter).

If present, this Parameter is treated as an opaque string with no specific
requirements for its format. That is, the TargetFileName value is to be interpreted
based on the CPE’s vendor-specific file naming conventions. Note that this
specification does not preclude the use of a file naming convention in which the
file’s path can be specified as part of the file name.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 93 of 190

Argument Type Description

DelaySeconds unsignedInt This argument has different meanings for Unicast and Multicast downloads. For
Unicast downloads it is the number of seconds before the CPE will initiate the
download. For Multicast downloads the CPE will initiate the download
immediately and it is the number of seconds available for initiating, performing and
applying the download.

The following applies only to Unicast downloads, i.e. to downloads where the URL
specifies a Unicast download transport protocol.

The number of seconds from the time this method is called to the time the
CPE is requested to initiate the download. A value of zero indicates that no
delay is requested. If a non-zero delay is requested, the download MUST
NOT occur in the same transaction session in which the request was issued.

The CPE MUST perform and apply the download immediately after the time
indicated by DelaySeconds, unless this is not possible for reasons outside
the CPE’s control, in which case the CPE MUST attempt to perform and
apply the download within one hour after the time indicated by
DelaySeconds. If the CPE cannot begin the download within this time
window, the CPE MUST consider the download to have failed and report this
failure to the ACS using the TransferComplete method. If the download
completes before the end of this time window, the CPE MUST apply the
download prior to the end of this time window. If the download is still in
progress at the end of this time window, the CPE MUST apply the download
immediately upon completion of the download.

The following applies only to Multicast downloads, i.e. to downloads where the
URL specifies a Multicast download transport protocol:

The number of seconds from the time this method is called that are available
for the CPE to initiate, perform and apply the download. Multicast downloads
MUST NOT occur in the same transaction session in which the request was
issued.

The CPE MUST perform and apply the download immediately, unless this is
not possible for reasons outside the CPE’s control, in which case the CPE
MUST attempt to perform and apply the download within DelaySeconds of
the download request. If the CPE cannot complete the download within this
time window, the CPE MUST consider the download to have failed and report
this failure to the ACS using the TransferComplete method.

The following applies to both Unicast and Multicast downloads:

The CPE MUST attempt to perform the download within the time window
specified above even if the CPE reboots one or more times prior to that time.

SuccessURL string(256) When applicable, this argument contains the URL, as defined in [12], the CPE
SHOULD redirect the user’s browser to if the download completes successfully.
This URL MAY include CGI arguments (for example, to maintain session state).

This applies only if the download was initiated via browser-based user interaction
and the CPE supports the ability to selectively redirect based on the download
results.

When there is no need for such a URL, this argument SHOULD be empty.

FailureURL string(256) When applicable, this argument contains the URL, as defined in [12], the CPE
SHOULD redirect the user’s browser to if the download does not complete
successfully. This URL MAY include CGI arguments (for example, to maintain
session state).

This applies only if the download was initiated via browser-based user interaction
and the CPE supports the ability to selectively redirect based on the download
results.

When there is no need for such a URL, this argument SHOULD be empty.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 94 of 190

Table 31 – DownloadResponse arguments

Argument Type Description

Status int[0:1] A successful response to this method returns an integer enumeration defined as
follows:

0 = Download has completed and been applied.

1 = Download has not yet been completed and applied (for example, if the CPE needs
to reboot itself before it can perform the file download, or if the CPE needs to reboot
itself before it can apply the downloaded file).

If the value of this argument is non-zero, the CPE MUST subsequently call the
TransferComplete method to indicate the completion status of this download (either
successful or unsuccessful) either later in the same session or in a subsequent session.

StartTime dateTime The date and time download was started in UTC. This need only be filled in if the
download has been completed. Otherwise, the value MUST be set to the Unknown
Time value.

CompleteTime dateTime The date and time the download was fully completed and applied in UTC. This need
only be filled in if the download has been completed. Otherwise, the value MUST be
set to the Unknown Time value.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003, 9004,

9010, 9012, 9013.

If an attempt is made to queue an additional download when the CPE‘s file transfer queue

is already full, the CPE MUST respond with fault 9004 (Resources exceeded). If the

CPE detects the presence of the ―userinfo‖ component in the file source URL, it

SHOULD reject the Download request with the fault code 9003 (Invalid arguments). If

the CPE rejects the Download request because the FileSize argument exceeds the

available space on the device, it MUST use the Download Failure (9010) fault code.

A.3.2.9 Reboot

This method causes the CPE to reboot, and calls for use of extreme caution. The CPE

MUST send the method response and complete the remainder of the session prior to

rebooting. The calling arguments for this method are defined in Table 32. The

arguments in the response are defined in Table 33.

Note – Multiple invocations of this method within a single session MUST result in only a single

reboot. In this case the Inform following the reboot would be expected to contain a single ―1

BOOT‖ EventCode and an ―M Reboot‖ EventCode for each method invocation.

This method is primarily intended for troubleshooting purposes. This method is not

intended for use by an ACS to initiate a reboot after modifying the CPE‘s configuration

(e.g., setting CPE Parameters or initiating a download). If a CPE requires a reboot after

its configuration is modified, the CPE MUST initiate that reboot on its own after the

termination of the Session
23

. Because some CPE will not require a reboot in these

circumstances, an ACS SHOULD NOT call the Reboot method as a result of modifying

the CPE‘s configuration, since this would result in an unnecessary reboot.

23 The CPE SHOULD wait until all active CWMP Endpoint Sessions are terminated prior to performing the Reboot.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 95 of 190

Table 32 – Reboot arguments

Argument Type Description

CommandKey string(32) The string to return in the CommandKey element of the InformStruct when the CPE
reboots and calls the Inform method.

The value of the CommandKey is entirely at the discretion of the ACS and MAY be an
empty string.

Table 33 – RebootResponse arguments

Argument Type Description

- void This method response has no arguments.

The following fault codes are defined for this method: 9001, 9002, 9003.

A.3.3 ACS Methods

The methods listed in this Section are defined to be supported on an ACS. Only a CPE

can call these methods.

A.3.3.1 Inform

A CPE MUST call the Inform method to initiate a transaction sequence whenever a

session with an ACS is established. The calling arguments for this method are defined in

Table 34. The arguments in the response are defined in Table 35.

Table 34 – Inform arguments

Argument Type Value

DeviceId DeviceIdStruct A structure that uniquely identifies the CPE, defined in Table 36.

Event EventStruct[64] An array of structures, as defined in Table 7 in Section 3.7.1.5,
indicating the events that caused the transaction session to be
established. If one or more causes exist, the CPE MUST list all such
causes. The ACS MUST NOT place any significance on the order of
events within this array.

If a CPE needs to deliver more than 64 events in a single Inform (this
would be expected to occur only under exceptional circumstances and
on rare occasions), it MUST discard the oldest “M” (method-related)
events in order to avoid exceeding the maximum array size.

If the session was established solely because the previous session
terminated unsuccessfully, this array MUST NOT contain events that
have already been delivered (if all events have already been delivered
this array MUST be empty).

If further events occur while a previous failed session is being retried,
the new events MUST be incorporated into the retried session’s event
array.

If the CPE establishes a session for which none of the standard event
codes apply, then this array MAY be empty.

MaxEnvelopes unsignedInt This argument MUST be set to a value of 1 because this version of the
protocol supports only a single envelope per message, and on reception
its value MUST be ignored.

CurrentTime dateTime The current date and time known to the CPE. This MUST be
represented in the local time zone of the CPE, and MUST include the
local time-zone offset from UTC (with appropriate adjustment for daylight
savings time). How the local time zone is determined by the CPE is
beyond the scope of this specification.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 96 of 190

Argument Type Value

RetryCount unsignedInt Number of prior times an attempt was made to retry this session.

This MUST be zero if and only if the previous session, if any, completed
successfully, i.e. it will be reset to zero only when a session completes
successfully.

ParameterList ParameterValueStruct[] Array of name-value pairs as specified in Table 14. This Parameter
MUST contain the name-value for the following Parameters:

 Every Parameter for which the ACS has set the Notification attribute
to either Active Notification or Passive Notification whose value has
been modified by an entity other than the ACS since the last
successful Inform notification (including values modified by the CPE
itself).

 Every Parameter defined in the corresponding Data Model as
requiring Forced Active Notification (regardless of the value of the
Notification attribute) for which the value has been modified by an
entity other than the ACS since the last successful Inform notification
(including values modified by the CPE itself).

 Every Parameter defined in the corresponding Data Model as being
required in every Inform.

If a Parameter has changed more than once since the last successful
Inform notification, the Parameter MUST be listed only once, with only
the most recent value given. In this case, the Parameter MUST be
included in the ParameterList even if its value has changed back to the
value it had at the time of the last successful Inform.

Whenever the CPE is re-booted, or if the ACS URL is modified, the CPE
MAY at that time clear its record of Parameters pending notification due
to a value change (though, the CPE MUST retain the values of the
Notification attribute for all Parameters). If the CPE clears its record of
Parameters pending notification due to a value change, it MUST at the
same time discard the corresponding “4 VALUE CHANGE” event.

If the value of at least one Parameter listed in the ParameterList has
been modified by an entity other than the ACS since the last successful
Inform notification to the same ACS, the Inform message MUST include
the EventCode “4 VALUE CHANGE”. This includes value changes to
any of the Parameters that are listed due to being required in every
Inform. Otherwise, the Inform message MUST NOT include the
EventCode “4 VALUE CHANGE”.

If the Inform message does include the “4 VALUE CHANGE” EventCode
then the ParameterList MUST include only those Parameters that meet
one of the three criteria listed above. If the Inform message does not
include the “4 VALUE CHANGE” EventCode, the ParameterList MAY
include additional Parameters at the discretion of the CPE.

Note that if the Inform message includes the “8 DIAGNOSTICS
COMPLETE" EventCode, the CPE is not required to include in the
ParameterList any Parameters associated with results of the
corresponding diagnostic, and as described above, if the “4 VALUE
CHANGE” EventCode is also present in the Inform, the ParameterList
MUST include only those Parameters that meet one of the three criteria
listed above.

Table 35 – InformResponse arguments

Argument Type Description

MaxEnvelopes unsignedInt This argument MUST be set to a value of 1 because this version of the protocol
supports only a single envelope per message, and on reception its value MUST be
ignored.

Table 36 – DeviceIdStruct definition

Name Type Description

Manufacturer string(64) Manufacturer of the device (for display only).

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 97 of 190

Name Type Description

OUI string(6) Organizationally unique identifier of the device manufacturer. Represented
as a six hexadecimal-digit value using all upper-case letters and including
any leading zeros. The value MUST be a valid OUI as defined in [10].

This value MUST remain fixed over the lifetime of the device, including
across firmware updates. Any change would indicate that it is a new device
and would therefore require a BOOTSTRAP Inform.

ProductClass string(64) Identifier of the class of product for which the serial number applies. That is,
for a given manufacturer, this Parameter is used to identify the product or
class of product over which the SerialNumber Parameter is unique.

This value MUST remain fixed over the lifetime of the device, including
across firmware updates. Any change would indicate that it is a new device
and would therefore require a BOOTSTRAP Inform.

SerialNumber string(64) Identifier of the particular device that is unique for the indicated class of
product and manufacturer.

This value MUST remain fixed over the lifetime of the device, including
across firmware updates. Any change would indicate that it is a new device
and would therefore require a BOOTSTRAP Inform.

Table 37 – EventStruct definition

Name Type Description

EventCode string(64) Each value consists of an identifying character followed by a text description
of the cause. See Table 7 in Section 3.7.1.5 for event codes, handling rules,
and a syntax for specifying vendor-specific events.

The value of this Parameter is case sensitive and MUST exactly match
either one of the values defined in Table 7 in Section 3.7.1.5, or the vendor-
specific form also specified in that table.

CommandKey string(32) If the EventCode in this Event list entry corresponds to a cause in which a
CommandKey has been specified, this element MUST contain the value of
that CommandKey.

For this version of the specification, the following causes result in this
argument being set to the value of the CommandKey argument in the
originating method call:

 ScheduleInform method (EventCode = “M ScheduleInform”)

 Reboot method (EventCode = “M Reboot”)

 Download method (EventCode = “M Download”)

 ScheduleDownload method (EventCode = “M ScheduleDownload”)

 ChangeDUState method (EventCode = “M ChangeDUState”)

 Upload method (EventCode = “M Upload”)

For each of the above methods, the CommandKey value from the method
argument MUST appear in the Event array entry containing the EventCode
value shown above. For all other EventCode values defined in this
specification, the value of CommandKey MUST be an empty string.

The following fault codes are defined for this method: 8001, 8002, 8003, 8004, 8005.

An ACS that receives an Inform without a ―0 BOOTSTRAP‖ EventCode from a CPE

from which it has not previously received an Inform with the ―0 BOOTSTRAP‖

EventCode MAY, at its discretion, respond with a fault code of 8003 (Invalid arguments).

A.3.3.2 TransferComplete

This method informs the ACS of the completion (either successful or unsuccessful) of a

file transfer initiated by an earlier Download, ScheduleDownload or Upload method call.

It MUST NOT be called for a file transfer that has been successfully canceled via a

CancelTransfer method call.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 98 of 190

This paragraph applies only when the file transfer was initiated via Download or Upload.

It does not apply to ScheduleDownload, which does not support downloading within the

same session. TransferComplete MUST be called only when the associated Download or

Upload response indicated that the transfer had not yet completed at that time (indicated

by a non-zero value of the Status argument in the response). In such cases, it MAY be

called either later in the same session in which the transfer was initiated or in any

subsequent session. Note that in order for it to be called within the same session in which

the transfer was initiated, the CPE will have been sent the InformResponse and

Download or Upload request while HoldRequests was true. When used, this method

MUST be called only after the transfer has successfully completed, and in the case of a

download, the downloaded file has been successfully applied, or after the transfer or

apply has failed. If this method fails, the CPE MUST NOT regard the ACS as having

been informed of the completion of the file transfer, and MUST attempt to call the

method again, either in the current session or in a new session, subject to the event

delivery rules of Section 3.7.1.5. The calling arguments for this method are defined in

Table 38. The arguments in the response are defined in Table 39.

Table 38 – TransferComplete arguments

Argument Type Value

CommandKey string(32) Set to the value of the CommandKey argument passed to CPE in the Download,
ScheduleDownload or Upload method call that initiated the transfer.

FaultStruct FaultStruct A FaultStruct as defined in Table 40. If the transfer was successful, the FaultCode is
set to zero. Otherwise a non-zero FaultCode is specified along with a FaultString
indicating the failure reason.

StartTime dateTime The date and time transfer was started in UTC. The CPE SHOULD record this
information and report it in this argument, but if this information is not available, the
value of this argument MUST be set to the Unknown Time value.

CompleteTime dateTime The date and time the transfer was fully completed and applied in UTC. The CPE
SHOULD record this information and report it in this argument, but if this information is
not available, the value of this argument MUST be set to the Unknown Time value.

Table 39 – TransferCompleteResponse arguments

Argument Type Value

- void This method response has no arguments.

Table 40 – FaultStruct definition

Name Type Value

FaultCode unsignedInt The numerical fault code as defined in Section A.5.1. In the case of a fault, allowed
values are: 9001, 9002, 9010, 9011, 9012, 9014, 9015, 9016, 9017, 9018, 9019, 9020.
A value of 0 (zero) indicates no fault.

FaultString string(256) A human-readable text description of the fault. This field SHOULD be empty if the
FaultCode equals 0 (zero).

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8004,

8005.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 99 of 190

A.3.3.3 AutonomousTransferComplete

This method informs the ACS of the completion (either successful or unsuccessful) of a

file transfer that was not specifically requested by the ACS. When used, this method

MUST be called only after the transfer has successfully completed, and in the case of a

download, the downloaded file has been successfully applied, or after the transfer or

apply has failed (e.g. a timeout expired). If this method fails, the CPE MUST NOT

regard the ACS as having been informed of the completion of the file transfer, and

MUST attempt to call the method again, either in the current session or in a new session,

subject to the event delivery rules of Section 3.7.1.5. The calling arguments for this

method are defined in Table 41. The arguments in the response are defined in Table 42.

Table 41 – AutonomousTransferComplete arguments

Argument Type Value

AnnounceURL string(1024) The URL on which the CPE listened to the announcements that led to this transfer
being performed, or an empty string if this transfer was not performed as a result
of an announcement, or if no such URL is available.

TransferURL string(1024) The URL from or to which this transfer was performed, or an empty string if no
such URL is available.

IsDownload boolean Indicates whether the autonomous transfer was a download (true) or an upload
(false).

FileType string(64) An integer followed by a space followed by the file type description. Only the
following values are currently defined for the FileType argument:

"1 Firmware Upgrade Image" (download only)

"2 Web Content" (download only)

“3 Vendor Configuration File” (download or upload) [DEPRECATED for
upload]

“4 Vendor Log File” (upload only) [DEPRECATED]

“4 Tone File” (download only; see [25] Appendix B)

“5 Ringer File” (download only; see [25] Appendix B)

“6 Vendor Configuration File <i>” (upload only)

“7 Vendor Log File <i>” (upload only)

For “6 Vendor Configuration File <i>”, <i> is replaced by the Instance
Number from the Vendor Config File Object as defined in the appropriate
Root Data Model. The Instance Number corresponds to that of the entry in
the vendor config file table that the CPE uploaded.

For “7 Vendor Log File <i>”, <i> is replaced by the Instance Number from the
Vendor Log File Object as defined in the appropriate Root Data Model. The
Instance Number corresponds to that of the entry in the vendor log file table
that the CPE uploaded.

The following format is defined to allow the unique definition of vendor-specific file
types:

"X <VENDOR> <Vendor-specific identifier>"

<VENDOR> is replaced by a unique vendor identifier, which MAY be either an
OUI or a domain name. The OUI or domain name used for a given vendor-
specific file type MUST be one that is assigned to the organization that defined
this method (which is not necessarily the same as the vendor of the CPE or ACS).
An OUI is an organizationally unique identifier as defined in [10], which MUST be
formatted as a 6 hexadecimal-digit OUI (organizationally unique identifier), with all
upper-case letters and any leading zeros included. A domain name MUST be
upper case with each dot (“.”) replaced with a hyphen or underscore.

FileSize unsignedInt The size of the file in bytes, or zero if this information is not available or if the CPE
chooses not to make it available.

TargetFileName string(256) The name of the file on the target (CPE) file system, or an empty string if this
information is not available or if the CPE chooses not to make it available.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 100 of 190

Argument Type Value

FaultStruct FaultStruct A FaultStruct as defined in Table 40. If the transfer was successful, the FaultCode
is set to zero. Otherwise a non-zero FaultCode is specified along with a
FaultString indicating the failure reason.

StartTime dateTime The date and time transfer was started in UTC. The CPE SHOULD record this
information and report it in this argument, but if this information is not available,
the value of this argument MUST be set to the Unknown Time value.

CompleteTime dateTime The date and time the transfer was fully completed and applied in UTC. The CPE
SHOULD record this information and report it in this argument, but if this
information is not available, the value of this argument MUST be set to the
Unknown Time value.

Table 42 – AutonomousTransferCompleteResponse arguments

Argument Type Value

- void This method response has no arguments.

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8004,

8005.

A.4 Optional RPC Messages

A.4.1 CPE Methods

The methods listed in this Section MAY optionally be supported on a CPE device. Only

an ACS can call these methods.

A.4.1.1 GetQueuedTransfers

Note – this method is DEPRECATED in favor of GetAllQueuedTransfers [Section

A.4.1.7].

This method MAY be used by an ACS to determine the status of previously requested

downloads or uploads. The calling arguments for this method are defined in Table 43.

The arguments in the response are defined in Table 44.

Table 43 – GetQueuedTransfers arguments

Argument Type Description

- void This method has no calling arguments.

Table 44 – GetQueuedTransfersResponse arguments

Argument Type Description

TransferList QueuedTransferStruct[16] Array of structures as defined in Table 45, each describing the state of
one transfer that the CPE has been instructed to perform, but has not
yet been fully completed.

Table 45 – QueuedTransferStruct definition

Name Type Description

CommandKey string(32) Set to the value of the CommandKey argument passed to CPE in the Download or Upload
method call that initiated the transfer.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 101 of 190

Name Type Description

State int[1:3] The current state of the transfer. Defined values are:

1 = Not yet started

2 = In progress

3 = Completed, finishing cleanup

All other values are reserved.

The following fault codes are defined for this method: 9000, 9001, 9002.

A.4.1.2 ScheduleInform

This method MAY be used by an ACS to request the CPE to schedule a one-time Inform

method call (separate from its periodic Inform method calls) sometime in the future. The

calling arguments for this method are defined in Table 46. The arguments in the response

are defined in Table 47.

Table 46 – ScheduleInform arguments

Argument Type Description

DelaySeconds unsignedInt The number of seconds from the time this method is called to the time the CPE is
requested to initiate a one-time Inform method call. The CPE sends a response, and
then DelaySeconds later calls the Inform method. This argument MUST be greater
than zero.

CommandKey string(32) The string to return in the CommandKey element of the InformStruct when the CPE
calls the Inform method.

The value of the CommandKey is entirely at the discretion of the ACS and MAY be
an empty string.

Table 47 – ScheduleInformResponse arguments

Argument Type Description

- void This method response has no arguments.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003.

A.4.1.3 SetVouchers

Note – this method, as part of the ―voucher mechanism‖ as defined in Annex C, is

DEPRECATED in favor of the ―Software Module Management mechanism‖ as

described in Appendix II / TR-157 Amendment 3 [29].

This method MAY be used by an ACS to set one or more option Vouchers in the CPE.

The calling arguments for this method are defined in Table 48. The arguments in the

response are defined in Table 49.

Table 48 – SetVouchers arguments

Argument Type Description

VoucherList base64[] Array of Vouchers, where each Voucher is represented as a Base64 encoded octet string.
The detailed structure of a Voucher is defined in Annex C.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 102 of 190

Table 49 – SetVouchersResponse arguments

Argument Type Description

- void This method response has no arguments.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003, 9004.

A.4.1.4 GetOptions

Note – this method, as part of the ―voucher mechanism‖ as defined in Annex C, is

DEPRECATED in favor of the ―Software Module Management mechanism‖ as

described in Appendix II / TR-157 Amendment 3 [29].

This method MAY be used by an ACS to obtain a list of the options currently set in a

CPE, and their associated state information. The calling arguments for this method are

defined in Table 50. The arguments in the response are defined in Table 51.

Table 50 – GetOptions arguments

Argument Type Description

OptionName string(64) A string representing either the name of a particular Option, or an empty string indicating
the method SHOULD return the state of all Options supported by the CPE (whether or not
they are currently enabled).

Table 51 – GetOptionsResponse arguments

Argument Type Description

OptionList OptionStruct[] Array of OptionStructs as defined in Table 52, containing either a single OptionStruct if
information about a particular Option was requested, or a list of OptionStructs, one for
each option supported by the CPE.

Table 52 – OptionStruct definition

Name Type Description

OptionName string(64) Identifying name of the particular Option.

VoucherSN unsignedInt Identifying number of the particular Option.

State unsignedInt A number formed by two bits, defined as follows:

Bit 0 (LSB):

0 = Option is currently disabled

1 = Option is currently enabled

Bit 1:

0 = Option has not been setup

1 = Option has been setup

The interpretation of the setup state of an Option is Option-specific, but in
general is to be interpreted as indicating whether the end-user has
actively performed any actions required to make the Option fully
operational.

Mode int[0:2] This element specifies whether the designated Option is enabled or
disabled; and if enabled, whether or not an expiration has been specified.
The defined values are:

0 = Disabled

1 = Enabled with expiration

2 = Enabled without expiration

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 103 of 190

Name Type Description

StartDate dateTime The specified start date for the Option in UTC. If in the future, this is the
date the Option is to be enabled. If in the past, this is the date the Option
was enabled.

This element applies only when the value of the Mode element is 1
(Enabled with expiration). When the Mode element has any other value,
StartDate MUST be set to the Unknown Time value.

ExpirationDate dateTime The specified date the Option is to expire in UTC, if any.

This element applies only when the value of the Mode element is 1
(Enabled with expiration). When the Mode element has any other value,
ExpirationDate MUST be set to the Unknown Time value.

IsTransferable boolean Indicates whether or not the Option has been designated transferable or
non-transferable (see Annex C). Defined values are:

0 = Non-transferable

1 = Transferable

The following fault codes are defined for this method: 9000, 9001, 9002, 9003.

A.4.1.5 Upload

This method MAY be used by the ACS to cause the CPE to upload a specified file to the

designated location. The calling arguments for this method are defined in Table 53. The

arguments in the response are defined in Table 54.

If the file cannot be successfully uploaded, the CPE MUST NOT attempt to retry the file

upload on its own initiative, but instead MUST report the failure of the upload to the ACS

via either the Upload response (if it has not yet been sent) or the TransferComplete

method. Upon the ACS being informed of the failure of an upload, the ACS MAY

subsequently attempt to reinitiate the upload by issuing a new Upload request.

If the CPE receives one or more Upload requests before performing a previously

requested upload, the CPE MUST queue all requested uploads and perform each of them

as closely as possible to the requested time (based on the value of the DelaySeconds

argument and the time of the request). Queued uploads MUST be retained across reboots

of the CPE. The CPE MUST be able to queue a minimum of three file transfers

(downloads and uploads).

For each upload performed, the CPE MUST send a distinct TransferComplete. Note that

the order in which a series of requested uploads will be performed might differ from the

order of the corresponding requests due to differing values of DelaySeconds. For

example, an ACS could request an upload with DelaySeconds equal to one hour, then

five minutes later request a second upload with DelaySeconds equal to one minute. In

this case, the CPE would perform the second upload before the first.

Table 53 – Upload arguments

Argument Type Description

CommandKey string(32) The string the CPE uses to refer to a particular upload. This argument is referenced
in the methods Inform, TransferComplete, GetQueuedTransfers,
GetAllQueuedTransfers and CancelTransfer.

The value of the CommandKey is entirely at the discretion of the ACS and MAY be
an empty string.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 104 of 190

Argument Type Description

FileType string(64) An integer followed by a space followed by the file type description. Only the
following values are currently defined for the FileType argument:

“1 Vendor Configuration File” [DEPRECATED]

“2 Vendor Log File” [DEPRECATED]

“3 Vendor Configuration File <i>”

“4 Vendor Log File <i>”

For “3 Vendor Configuration File <i>”, <i> is replaced by the Instance Number
from the Vendor Config File object as defined in the appropriate Root Data
Model. The CPE uploads the file that corresponds to that entry in the vendor
config file table.

For “4 Vendor Log File <i>”, <i> is replaced by the Instance Number from the
Vendor Log File object as defined in the appropriate Root Data Model. The
CPE uploads the file that corresponds to that entry in the vendor log file table.

The following format is defined to allow the unique definition of vendor-specific file
types:

"X <VENDOR> <Vendor-specific identifier>"

<VENDOR> is replaced by a unique vendor identifier, which MAY be either an OUI or
a domain name. The OUI or domain name used for a given vendor-specific file type
MUST be one that is assigned to the organization that defined this method (which is
not necessarily the same as the vendor of the CPE or ACS). An OUI is an
organizationally unique identifier as defined in [10], which MUST be formatted as a 6
hexadecimal-digit OUI (organizationally unique identifier), with all upper-case letters
and any leading zeros included. A domain name MUST be upper case with each dot
(“.”) replaced with a hyphen or underscore.

The FileType argument is intended to fully identify the file to be uploaded. If the
standard values listed above are insufficient to uniquely identify the file, then vendor-
specific file types MAY be used that provide more specific information to allow the
intended file to be identified.

URL string(256) URL, as defined in [12], specifying the destination file location. HTTP and HTTPS
transports MUST be supported. Other optional transports, as specified in Section
2.3.2, MAY be supported. When performing an upload to the URL specified by this
argument, the CPE MUST make use of the HTTP PUT method.

This argument specifies only the destination file location, and does not indicate in any
way the name or location of the local file to be uploaded. The local file to be
uploaded MUST be determined only by the FileType argument.

This URL MUST NOT include the “userinfo” component, as defined in [12].

Username string(256) Username to be used by the CPE to authenticate with the file server. This string is
set to the empty string if no authentication is required.

Password string(256) Password to be used by the CPE to authenticate with the file server. This string is
set to the empty string if no authentication is required.

DelaySeconds unsignedInt The number of seconds from the time this method is called to the time the CPE is
requested to initiate the upload. A value of zero indicates that no delay is requested.
If a non-zero delay is requested, the upload MUST NOT occur in the same
transaction session in which the request was issued.

The CPE MUST perform the upload immediately after the time indicated by
DelaySeconds, unless this is not possible for reasons outside the CPE’s control, in
which case the CPE MUST attempt to perform the upload within one hour after the
time indicated by DelaySeconds. If the CPE cannot begin the upload within this time
window, the CPE MUST consider the upload to have failed and report this failure to
the ACS using the TransferComplete method.

The CPE MUST attempt to perform the upload within the time window specified
above even if the CPE reboots one or more times prior to that time.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 105 of 190

Table 54 – UploadResponse arguments

Argument Type Description

Status int[0:1] A successful response to this method returns an integer enumeration defined as
follows:

0 = Upload has completed.

1 = Upload has not yet completed (for example, if the upload needs to wait until after
the session has been terminated).

If the value of this argument is non-zero, the CPE MUST subsequently call the
TransferComplete method to indicate the completion status of this upload (either
successful or unsuccessful) either later in the same session or in a subsequent session.

StartTime dateTime The date and time upload was started in UTC. This need only be filled in if the upload
has been completed. Otherwise, the value MUST be set to the Unknown Time value.

CompleteTime dateTime The date and time the upload was fully completed and applied in UTC. This need only
be filled in if the upload has been completed. Otherwise, the value MUST be set to the
Unknown Time value.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003, 9004,

9011, 9012, 9013.

If an attempt is made to queue an upload when the file transfer queue is already full, the

CPE MUST respond with fault 9004 (Resources exceeded). If the CPE detects the

presence of the ―userinfo‖ component in the file destination URL, it SHOULD reject the

Upload request with the fault code 9003 (Invalid arguments).

A.4.1.6 FactoryReset

This method resets the CPE to its factory default state, and calls for use with extreme

caution. The CPE MUST initiate the factory reset procedure only after successful

completion of the session. The calling arguments for this method are defined in Table 55.

The arguments in the response are defined in Table 56.

Table 55 – FactoryReset arguments

Argument Type Description

- void This method has no arguments.

Table 56 – FactoryResetResponse arguments

Argument Type Description

- void This method response has no arguments.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003.

A.4.1.7 GetAllQueuedTransfers

This method MAY be used by an ACS to determine the status of all queued downloads

and uploads, including any that were not specifically requested by the ACS, i.e.

autonomous transfers. The calling arguments for this method are defined in Table 57.

The arguments in the response are defined in Table 58.

Table 57 – GetAllQueuedTransfers arguments

Argument Type Description

- void This method has no calling arguments.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 106 of 190

Table 58 – GetAllQueuedTransfersResponse arguments

Argument Type Description

TransferList AllQueuedTransferStruct[16] Array of structures as defined in Table 59, each describing the state
of one transfer that has not yet been fully completed.

Table 59 – AllQueuedTransferStruct definition

Name Type Description

CommandKey string(32) Set to the value of the CommandKey argument passed to CPE in the Download,
ScheduleDownload or Upload method call that initiated the transfer, or an empty
string for an autonomous transfer.

State int[1:3] The current state of the transfer. Defined values are:

1 = Not yet started

2 = In progress

3 = Completed, finishing cleanup

All other values are reserved.

IsDownload boolean Indicates whether the transfer is a download (true) or an upload (false).

FileType string(64) An integer followed by a space followed by the file type description. Only the
following values are currently defined for the FileType argument:

"1 Firmware Upgrade Image" (download only)

"2 Web Content" (download only)

“3 Vendor Configuration File” (download or upload) [DEPRECATED for
upload]

“4 Vendor Log File” (upload only) [DEPRECATED]

“4 Tone File” (download only; see [25] Appendix B)

“5 Ringer File” (download only; see [25] Appendix B)

“6 Vendor Configuration File <i>” (upload only)

“7 Vendor Log File <i>” (upload only)

For “6 Vendor Configuration File <i>”, <i> is replaced by the Instance Number
from the Vendor Config File object as defined in the appropriate Root Data
Model. The Instance Number corresponds to that of the entry in the vendor
config file that the CPE had been instructed to upload.

For “7 Vendor Log File <i>”, <i> is replaced by the Instance Number from the
Vendor Log File object as defined in the appropriate Root Data Model. The
Instance Number corresponds to that of the entry in the vendor log file table
that the CPE had been instructed to upload.

The following format is defined to allow the unique definition of vendor-specific file
types:

"X <VENDOR> <Vendor-specific identifier>"

<VENDOR> is replaced by a unique vendor identifier, which MAY be either an
OUI or a domain name. The OUI or domain name used for a given vendor-
specific file type MUST be one that is assigned to the organization that defined
this method (which is not necessarily the same as the vendor of the CPE or ACS).
An OUI is an organizationally unique identifier as defined in [10], which MUST be
formatted as a 6 hexadecimal-digit OUI (organizationally unique identifier), with all
upper-case letters and any leading zeros included. A domain name MUST be
upper case with each dot (“.”) replaced with a hyphen or underscore.

FileSize unsignedInt The size of the file in bytes, or zero if this information is not available or if the CPE
chooses not to make it available.

TargetFileName string(256) The name of the file on the target (CPE) file system, or an empty string if this
information is not available or if the CPE chooses not to make it available.

The following fault codes are defined for this method: 9000, 9001, 9002.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 107 of 190

A.4.1.8 ScheduleDownload

Note – the functionality provided by this method overlaps that of the Download method [Section

A.3.2.8]. Unlike Download, this method provides fine-grained control over when the download

can be performed and applied. Also, this method does not permit a file to be downloaded and

applied within the same session.

This method MAY be used by the ACS to cause the CPE to download a specified file

from the designated location and apply it within either one or two specified time

windows. The CPE MUST support two time windows. The calling arguments for this

method are defined in Table 60. The arguments in the response are defined in Table 61.

When a download is initiated using this method, the CPE MUST indicate successful or

unsuccessful completion of the download via a TransferComplete message sent in a

subsequent session.

The CPE MUST only indicate successful completion of the download after the

downloaded file has been both successfully transferred and applied. While the criterion

used to determine when a file has been successfully applied is specific to the CPE‘s

implementation, the CPE SHOULD consider a downloaded file to be successfully applied

only after the file is installed and in use as intended.

In the particular case that the downloaded file is a software image, the CPE MUST

consider the downloaded file to be successfully applied only after the new software image

is actually installed and operational. If the software image replaces the overall software

of the CPE (which would typically require a reboot to install and begin execution), the

software version represented in the Data Model MUST already reflect the updated

software image in the session in which the CPE sends a TransferComplete indicating

successful download.

If the file cannot be successfully downloaded or applied within the boundaries of the

specified time windows, the CPE MUST NOT attempt to retry the file download on its

own initiative, but instead MUST report the failure of the download to the ACS. Upon

the ACS being informed of the failure of a download, the ACS MAY subsequently

attempt to reinitiate the download by issuing a new ScheduleDownload request.

If an unrecoverable error occurs during a download, e.g. the file is not accessible or is

corrupted, the file transfer MUST be aborted, even if the failure occurred on the first of

two time windows.

If the CPE receives one or more Download or ScheduleDownload requests before

performing a previously requested download, the CPE MUST queue all requested

downloads and perform each of them as closely as possible to the requested time (based

on the values of WindowStart in the time windows and the time of the request). Queued

downloads MUST be retained across reboots and firmware upgrades of the CPE. The

CPE MUST be able to queue a minimum of three file transfers (downloads and uploads).

For each download performed, the CPE MUST send a distinct TransferComplete. Note

that the order in which a series of requested downloads will be performed might differ

from the order of the corresponding requests due to differing time windows. For

example, an ACS could request a download with a time window starting in one hour, then

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 108 of 190

five minutes later request a second download with a time window starting in one minute.

In this case, the CPE would perform the second download before the first.

All modifications to a CPE‘s configuration resulting from use of the ScheduleDownload

method MUST be retained across reboots of the CPE.

If (and only if) the file transfer does not impact subscriber services, a CPE MAY transfer

the file outside of a time window. For example, this might be the case for CPE which use

Multicast streams for downloads. However, the CPE MUST never apply a downloaded

file outside of a time window.

Table 60 – ScheduleDownload arguments

Argument Type Description

CommandKey string(32) The string the CPE uses to refer to a particular download. This argument is
referenced in the methods Inform, TransferComplete, GetQueuedTransfers,
GetAllQueuedTransfers and CancelTransfer.

The value of the CommandKey is entirely at the discretion of the ACS and MAY be
an empty string.

FileType string(64) An integer followed by a space followed by the file type description. Only the
following values are currently defined for the FileType argument:

"1 Firmware Upgrade Image"

"2 Web Content"

“3 Vendor Configuration File”

“4 Tone File” (see [25] Appendix B)

“5 Ringer File” (see [25] Appendix B)

The following format is defined to allow the unique definition of vendor-specific file
types:

"X <VENDOR> <Vendor-specific identifier>"

<VENDOR> is replaced by a unique vendor identifier, which MAY be either an OUI
or a domain name. The OUI or domain name used for a given vendor-specific file
type MUST be one that is assigned to the organization that defined this method
(which is not necessarily the same as the vendor of the CPE or ACS). An OUI is an
organizationally unique identifier as defined in [10], which MUST be formatted as a 6
hexadecimal-digit OUI (organizationally unique identifier), with all upper-case letters
and any leading zeros included. A domain name MUST be upper case with each
dot (“.”) replaced with a hyphen or underscore.

If and only if the CPE supports downloading of firmware images using the
ScheduleDownload method, the CPE MUST support the "1 Firmware Upgrade
Image" FileType value. All other FileType values are OPTIONAL.

The FileType value of "2 Web Content" is intended to be used for downloading files
that contain only web content for a CPE’s web-based user interface. A CPE that
supports a web-based user interface and allows the content to be downloaded from
the ACS via the ScheduleDownload method as a distinct file containing only web
content SHOULD use the FileType value of "2 Web Content" when performing such
a download. A CPE that supports a web-based user interface and allows the
content to be downloaded from the ACS MAY instead include web content as part of
its firmware upgrade image, or use some other means to update the web content in
the CPE. Such a CPE need not support the FileType value of "2 Web Content".

URL string(256) URL, as defined in [12], specifying the source file location. HTTP and HTTPS
transports MUST be supported. Other optional transports, as specified in Section
2.3.2, MAY be supported.

If the CPE receives multiple ScheduleDownload requests with the same source
URL, the CPE MUST perform each download as requested, and MUST NOT
assume that the content of the file to be downloaded is the same each time.

This URL MUST NOT include the “userinfo” component, as defined in [12].

Username string(256) Username to be used by the CPE to authenticate with the file server. This string is
set to the empty string if no authentication is required.

Password string(256) Password to be used by the CPE to authenticate with the file server. This string is
set to the empty string if no authentication is required.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 109 of 190

Argument Type Description

FileSize unsignedInt The size of the file to be downloaded in bytes.

The FileSize argument is intended as a hint to the CPE, which the CPE MAY use to
determine if it has sufficient space for the file to be downloaded, or to prepare space
to accept the file.

The ACS MAY set this value to zero. The CPE MUST interpret a zero value to
mean that that the ACS has provided no information about the file size. In this case,
the CPE MUST attempt to proceed with the download under the presumption that
sufficient space is available, though during the course of download, the CPE might
determine otherwise.

The ACS SHOULD set the value of this Parameter to the exact size of the file to be
downloaded. If the value is non-zero, the CPE MAY reject the ScheduleDownload
request on the basis of insufficient space.

If the CPE attempts to proceed with the download based on the value of this
argument, but the actual file size differs from the value of this argument, this could
result in a failure of the download. However, the CPE MUST NOT cause the
download to fail solely because it determines that the value of this argument is
inaccurate.

TargetFile-

Name

string(256) The name of the file to be used on the target file system. This argument MAY be left
empty if the target file name can be extracted from the downloaded file itself, or from
the URL argument, or if no target file name is needed. If this argument is specified,
but the target file name is also indicated by another source (for example, if it is
extracted from the downloaded file itself), this argument MUST be ignored. If the
target file name is used, the downloaded file would replace any existing file of the
same name (whether or not the CPE archives the replaced file is a local matter).

If present, this Parameter is treated as an opaque string with no specific
requirements for its format. That is, the TargetFileName value is to be interpreted
based on the CPE’s vendor-specific file naming conventions. Note that this
specification does not preclude the use of a file naming convention in which the file’s
path can be specified as part of the file name.

TimeWindow-

List

TimeWin-
dowStr-
uct[1:2]

This structure defines the time window(s) during which the CPE MUST perform and
apply the download. As noted earlier, if a file transfer does not generate additional
network traffic and does not impact subscriber services, the CPE is permitted to
perform (but not apply) the download outside of a time window.

A CPE MUST be able to accept a request with either one or two TimeWindowStruct
elements.

The time windows MUST NOT overlap, i.e. if there are two time windows, the
second window’s WindowStart value has to be greater than or equal to the first
window’s WindowEnd value.

Table 61 – ScheduleDownloadResponse arguments

Argument Type Description

- void This method response has no arguments.

Table 62 – TimeWindowStruct definition

Name Type Description

WindowStart unsignedInt Start of this time window as an offset in seconds after receiving the
download request. An offset is used in order to avoid a
dependence on absolute time.

WindowEnd unsignedInt End of this time window as an offset in seconds after receiving the
download request. An offset is used in order to avoid a
dependence on absolute time.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 110 of 190

Name Type Description

WindowMode string(64) An integer followed by a space followed by the time window mode
description. The following values are currently defined:

“1 At Any Time”

“2 Immediately”

“3 When Idle”

“4 Confirmation Needed”

The following format is defined to allow for the unique definition of
vendor-specific time window modes:

“X <VENDOR> <Vendor specific identifier>”

<VENDOR> is replaced by a unique vendor identifier, which MAY
be either an OUI or a domain name. The OUI or domain name
used for a given vendor-specific file type MUST be one that is
assigned to the organization that defined this method (which is not
necessarily the same as the vendor of the CPE or ACS). An OUI
is an organizationally unique identifier as defined in [10], which
MUST be formatted as a 6 hexadecimal-digit OUI (organizationally
unique identifier), with all upper-case letters and any leading zeros
included. A domain name MUST be upper case with each dot (“.”)
replaced with a hyphen or underscore.

WindowMode specifies when within this time window the CPE is
permitted to perform

and apply the download. As noted earlier, if a

file transfer does not impact subscriber services, the CPE is
permitted to perform (but not apply) the download outside of a time
window.

The CPE MUST support “1 At Any Time”. This means that the
CPE MAY perform and apply a download at any time during the
time window even if this results in interruption of service for the
subscriber.

The CPE MUST support “2 Immediately”. This means that the
CPE MUST perform and apply a download immediately at the start
of the time window even if this results in interruption of service for
the subscriber.

The CPE MUST support “3 When Idle”. This means that
interruption of service from the subscriber standpoint MUST NOT
occur during the time window. How the CPE determines this is
outside the scope of this specification.

The CPE MAY support “4 Confirmation Needed”. This means that
the CPE MUST ask for and receive confirmation before performing
and applying the download. It is outside the scope of this
specification how the CPE asks for and receives this confirmation.
If confirmation is not received, this time window MUST NOT be
used.

UserMessage string(256) A message to the user of the CPE, to inform him about a download
request. The CPE MAY use this message when seeking
confirmation from the user, e.g. when WindowMode is “4
Confirmation Needed”.

When there is no need for such a message, it SHOULD be empty
and MUST be ignored.

MaxRetries int The maximum number of retries for downloading and/or applying
the file before regarding the transfer as having failed. Refers only
to this time window (each time window can specify its own value).
A value of 0 means “No retries are permitted”. A value of -1
means “the CPE determines the number of retries”, i.e. that the
CPE can use its own retry policy, not that it has to retry forever.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003, 9004,

9010, 9013.

If an attempt is made to queue an additional download when the CPE‘s file transfer queue

is already full, the CPE MUST respond with fault 9004 (Resources exceeded). If the

CPE detects the presence of the ―userinfo‖ component in the file source URL, or detects

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 111 of 190

overlapping or otherwise invalid time windows (including zero windows supplied, or

unsupported time window modes), it SHOULD reject the ScheduleDownload request

with the fault code 9003 (Invalid arguments). If the CPE rejects the ScheduleDownload

request because the FileSize argument exceeds the available space on the device, it

MUST use the Download Failure (9010) fault code.

A.4.1.9 CancelTransfer

This method MAY be used by the ACS to cause the CPE to cancel a file transfer initiated

by an earlier Download, ScheduleDownload or Upload method call. The

TransferComplete method is not called for a file transfer that has successfully been

canceled. The calling arguments for this method are defined in Table 63. The arguments

in the response are defined in Table 64.

Table 63 – CancelTransfer arguments

Name Type Description

CommandKey string(32) The command key that was provided in the original Download,
Upload or ScheduleDownload RPC.

Table 64 – CancelTransferResponse arguments

Name Type Description

- void This method response has no arguments

The following fault codes are defined for this method: 9000, 9001, 9004, 9021.

The CPE might be unable to cancel an active transfer, e.g. the file might currently be

being downloaded in an uninterruptible way, or the CPE might be just about to apply the

downloaded file. In this case, the CPE MUST respond with fault 9021 (Cancelation of

file transfer not permitted in current transfer state). If the ACS is planning to cancel

transfers, it SHOULD use a unique command key for each transfer. However, if the

command key matches more than one transfer, the CPE MUST attempt to cancel all the

matching transfers, and MUST respond with fault 9021 (described above) if it is unable

to cancel all of them, in which case it SHOULD cancel as many matching transfers as it

can. It is not an error to specify an invalid command key.

A.4.1.10 ChangeDUState

Appendix II / TR-157 Amendment 3 [29] details a Theory of Operation for Software Module

Management, including defining the implicit and explicit state transitions for a DU.

This method MAY be used by an ACS to trigger the explicit state transitions of Install,

Update, and Uninstall for a Deployment Unit (DU), i.e. installing a new DU, updating an

existing DU, or uninstalling an existing DU. The calling arguments for this method are

defined in Table 65. The arguments in the response are defined in Table 66.

When a DU state change is initiated using this method the CPE MUST indicate

successful or unsuccessful completion of the state change via the

DUStateChangeComplete method sent in a subsequent session or via a CWMP fault sent

within the same session.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 112 of 190

The ChangeDUState method MUST include one or more DU operations within a single

method call, where a DU operation is described by one of the three types of operation

structures (OperationStruct) that are defined in Table 67. There MUST, however, be only

one resultant DUStateChangeComplete method for each ChangeDUState method issued

by the ACS, and the DUStateChangeComplete MUST contain at least one result for each

operation, including both successful and unsuccessful operations. The CPE MAY apply

the operations in any order it chooses, but it MUST report the results for each operation

in the same order as they were sent in the request. If the ACS wants to effect multiple

state transitions for the same DU, then it SHOULD utilize multiple ChangeDUState

RPCs to do so.

Regardless of the order in which the operations are applied, the CPE MUST complete

each operation within one hour. If the CPE is unable to do so, it MUST consider that

specific operation in error and send the appropriate FaultStruct in the resulting

DUStateChangeComplete method call.

The CPE MUST send the related DUStateChangeComplete RPC within 24 hours of

responding to the ChangeDUState method. If the CPE has not been able to complete all

of the operations within that 24 hour time window, it MUST consider the remaining

operations in error and send the appropriate FaultStruct within the resulting

DUStateChangeComplete RPC.

If the ACS sends a request that contains more operation structures than the CPE can

handle, the CPE MAY respond with a ―Resources exceeded‖ (9004) CWMP Fault. The

CPE MUST, however, be able to accept a minimum of sixteen (16) operation structures

within a single request without issuing a ―Resources exceeded‖ (9004) CWMP Fault.

If a DU state change fails, the CPE MUST NOT attempt to retry the state change on its

own initiative, but instead MUST report the failure of the operation to the ACS using the

DUStateChangeComplete method. Upon the ACS being informed of operation failure

the ACS MAY subsequently attempt to reinitiate the DU state change by issuing a new

ChangeDUState request.

Each DU operation contains an argument called UUID, which enables an ACS to

uniquely identify a DU across CPE. The UUID is also a part of the Deployment Unit

table‘s unique key, along with the version of the DU and the Execution Environment that

the DU is installed against. The format of the UUID and rules for generating the UUID

are defined in RFC 4122 [34]. Additional rules for generating the UUIDs for Software

Module Management are defined in Annex H. If the rules defined in RFC 4122 and

Annex H are adhered to, both an ACS and a CPE will generate an equivalent UUID.

All modifications to a CPE‘s configuration resulting from use of the ChangeDUState

method MUST be retained across reboots of the CPE.

Table 65 – ChangeDUState Arguments

Argument Type Description

Operations OperationStruct[] The set of DU-related operations to be performed. The argument can contain any
combination of the various OperationStruct types.

CommandKey string(32) The string the CPE uses to refer to a particular ChangeDUState. This argument is
referenced in the methods Inform and DUStateChangeComplete. The value of the
CommandKey is entirely at the discretion of the ACS and MAY be an empty string.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 113 of 190

Table 66 – ChangeDUStateResponse Arguments

Argument Type Description

- void This method response has no arguments.

Table 67 – OperationStruct Types

Name Type Description

InstallOpStruct OperationStruct This is a type of OperationStruct used to Install new DUs on an Execution
Environment.

UpdateOpStruct OperationStruct This is a type of OperationStruct used to Update existing DUs on an
Execution Environment.

UninstallOpStruct OperationStruct This is a type of OperationStruct used to Uninstall existing DUs from an
Execution Environment.

The three OperationStruct types in this table correspond to the three different explicit

actions defined in the State Diagram in Appendix II / TR-157 Amendment 3 [29]. These

are the structures that are allowed to appear in the Operations argument of the

ChangeDUState RPC.

Table 68 – InstallOpStruct Definition

Name Type Description

URL string(1024) The URL, as defined in RFC 3986 [12], that specifies the location of the DU to
be installed. HTTP and HTTPS transports MUST be supported. Other optional
transports, as specified in Section 2.3.2, MAY be supported. If the CPE receives
multiple Install requests with the same source URL, the CPE MUST perform
each Install as requested, and MUST NOT assume that the content of the file to
be downloaded is the same each time.

This URL MUST NOT include the “userinfo” component, as defined in RFC 3986
[12].

UUID string(36) The UUID (see RFC 4122 [34] and Annex H) of the DU to be installed. The ACS
MAY send down an empty string in which case the CPE MUST generate the
UUID based on the rules defined in RFC 4122 [34] and Annex H.

Username string(256) Username to be used by the CPE to authenticate with the file server, if
authentication is required.

Password string(256) Password to be used by the CPE to authenticate with the file server, if
authentication is required.

ExecutionEnvRef string(256) A reference to the Execution Environment upon which the DU is to be installed.
This argument is the Path Name of the Execution Environment Object instance,
including its Instance Identifier. The Path Name MUST end with a “.” (dot) after
the Instance Identifier of the Object.

If this string is either not provided or sent in as an empty string, the CPE MUST
choose which Execution Environment to use.

Table 69 – UpdateOpStruct Definition

Name Type Description

UUID string(36) The UUID (see RFC 4122 [34] and Annex H) of the existing DU that is to be updated.

Version string(32) The Version indicates which version of the DU to update when there are multiple versions
available. If there are multiple versions available, this argument MUST be specified.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 114 of 190

Name Type Description

URL string(1024) The URL, as defined in RFC 3986 [12], that specifies the location of the update to be
applied to the existing DU(s). HTTP and HTTPS transports MUST be supported. Other
optional transports, as specified in Section 2.3.2, MAY be supported. If the CPE receives
an Update request with the same source URL as a previous Update or Install, the CPE
MUST perform each Update as requested, and MUST NOT assume that the content of the
file to be downloaded is the same each time.

This URL MUST NOT include the “userinfo” component, as defined in RFC 3986 [12].

Username string(256) Username to be used by the CPE to authenticate with the file server, if authentication is
required.

Password string(256) Password to be used by the CPE to authenticate with the file server, if authentication is
required.

The combination of the UUID and URL determine which DU(s) will be updated. There

are four possibilities (NOTE: if the URL is empty then the Username and Password

SHOULD also be empty):

 UUID populated, URL empty: The CPE MUST Update the DU with the matching UUID based on

its internal URL (the CPE SHOULD use the credentials that were last used to Install or Update

this DU)

 UUID empty, URL populated: The CPE MUST Update the DU that last used the URL at either

Install or Update (i.e. matches the URL Parameter in the DeploymentUnit.{i}. table)

 UUID populated, URL populated: The CPE MUST Update the DU with the matching UUID and

update its internal URL

 UUID empty, URL empty: The CPE MUST Update all DUs based on their internal URL (the CPE

SHOULD use the credentials that were last used to Install or Update the DU)

Note that because this option [UUID empty, URL empty] is intended to update all DUs, the

Version MUST NOT be specified. If the Version is specified, the CPE SHOULD consider this

operation in fault using 9003 as the fault code.

Table 70 – UninstallOpStruct Definition

Name Type Description

UUID string(36) The UUID (see RFC 4122 [34] and Annex H) of the existing DU that is to be
uninstalled.

Version string(32) The version of the DU to be uninstalled. If this argument is not provided or is an
empty string, all versions of the DU with the corresponding UUID are uninstalled.

ExecutionEnvRef string(256) A reference to the Execution Environment that the DU is to be uninstalled from.
This argument is the Path Name of the Execution Environment Object instance,
including its Instance Identifier. The Path Name MUST end with a “.” (dot) after
the Instance Identifier of the Object.

If this string is either not provided or sent in as an empty string, the CPE MUST
uninstall this DU from all Execution Environments that it is installed on.

The following fault codes are defined for this method: 9000, 9001, 9002, and 9004.

These are the fault codes for the RPC as a whole; there can also be faults reported against

specific operations contained in the DUStateChangeComplete FaultStruct (see A.4.2.3 for

more details regarding the faults related to the individual operations). Appendix II.5 /

TR-157 Amendment 3 [29] provides a description of the Software Module Management

faults.

If the ACS sends a request that contains more operation structures than the CPE can

handle, the CPE MAY respond with a 9004 (Resources Exceeded) CWMP Fault. Note

that this scenario is differentiated from the 9027 (System Resources Exceeded) fault

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 115 of 190

described in A.4.2.3, in which the CPE does not have the resources to perform the install

or update of the DU.

A.4.2 ACS Methods

The methods listed in this Section MAY optionally be supported on an ACS. Only a

CPE can call these methods.

A.4.2.1 Kicked

Note – this method is DEPRECATED due to the deprecation of Annex D, which defined the usage

of this RPC.

The CPE calls this method whenever the CPE is ―kicked‖ as described in Annex D. The

calling arguments for this method are defined in Table 71. The arguments in the response

are defined in Table 72.

Table 71 – Kicked arguments

Argument Type Value

Command string(32) Generic argument that MAY be used by the ACS for identification or other purposes.

Referer string(64) The content of the “Referer” HTTP header sent to the CPE when it was kicked.

Arg string(256) Generic argument that MAY be used by the ACS for identification or other purposes.

Next string(1024) The URL the ACS SHOULD return in the method response under normal conditions.

Table 72 – KickedResponse arguments

Argument Type Value

NextURL string(1024) The next URL the user’s browser SHOULD be redirected to. This URL MAY include CGI
arguments (for example, to maintain session state).

If the ACS wishes to send the user’s browser to a page on the CPE device itself, only the
path portion of the URL is returned as a result (e.g. “/security/index.html”). This allows the
CPE to use its canonical hostname in the HTTP 302 response. Note that this would require
the ACS to have previous knowledge of available URLs on the CPE device through some
mechanism outside the scope of this specification.

If this method returns a fault, the CPE SHOULD redirect the browser to an error page

resident on the CPE device.

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8005.

A.4.2.2 RequestDownload

This method allows the CPE to request a file download from the ACS. On reception of

this request, the ACS MAY call the Download method to initiate the download. The

calling arguments for this method are defined in Table 73. The arguments in the response

are defined in Table 74.

Table 73 – RequestDownload arguments

Argument Type Value

FileType string(64) This is the FileType being requested (see Table 30 for the list of allowed file types).

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 116 of 190

Argument Type Value

FileTypeArg ArgStruct[16] Array of zero or more additional arguments, where each argument is a structure of
name-value pairs as defined in Table 75. The use of the additional arguments
depend on the FileType specified.

The following arguments are defined for each of the currently defined file types.

FileType FileTypeArg Names

1 Firmware Upgrade (none)

2 Web Content “Version”

3 Vendor Configuration File (none)

4 Tone File (none)
(see [25] Appendix B)

5 Ringer File (none)
(see [25] Appendix B)

If the ACS receives arguments that it does not understand, it MUST ignore the
unknown arguments, but process the request using the arguments that it does
understand.

Table 74 – RequestDownloadResponse arguments

Argument Type Description

- void This method response has no arguments.

Table 75 – ArgStruct definition

Name Type Description

Name string(64) Argument name.

Value string(256) Argument value.

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8005.

A.4.2.3 DUStateChangeComplete

This method informs the ACS of the completion of an earlier requested ChangeDUState

method call, including both successful and unsuccessful operations. This method MUST

be called only after the CPE has completed any file transfers related to the

ChangeDUState request and attempted all of the operations specified in the

ChangeDUState request, or if the ChangeDUState request times out. If the ACS fails the

DUStateChangeComplete method, the CPE MUST NOT regard the ACS as having been

informed of the completion of the file transfer, and MUST attempt to call the method

again, either in the current session or in a new session, subject to the event delivery rules

of Section 3.7.1.5.

There MUST be exactly one DUStateChangeComplete method for each ChangeDUState

method called. The DUStateChangeComplete method MUST contain the results,

whether success or failure, for each of the requested operations in the ChangeDUstate

request. The entries in the Results argument MUST be in the same order as in the

requesting ChangeDUState method, although the order in which the CPE actually applies

the changes is up to the CPE implementation. There are situations in which a single

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 117 of 190

ChangeDUState operation affects multiple Deployment Units. In this case there MUST

be an OpResultStruct entry for each affected DU contained within the Results argument.

The calling arguments for this method are defined in Table 76. The arguments in the

response are defined in Table 79.

Table 76 – DUStateChangeComplete Arguments

Name Type Description

Results OpResultStruct[] The results of Operations performed against DUs.

CommandKey string(32) The value of the CommandKey argument passed to the
CPE in the corresponding ChangeDUState method call.

Table 77 – OpResultStruct Definition

Name Type Description

UUID string(36) The UUID as defined in RFC 4122 [34] of the DU that was affected. In
the case of an Install, this will be the UUID of the DU that was created. In
the case of an Update or Uninstall, it will be the existing UUID of the DU
that was either updated or uninstalled.

DeploymentUnitRef string(256) A reference to the DU affected. In the case of an Install, this is the DU
that was created. In the case of an Update, this is the DU that was
updated. In the case of an Uninstall, this is the DU that was removed.

The DU reference is a full Path Name of the DeploymentUnit Object
instance, including its Instance Identifier. The Path Name MUST end with
a “.” (dot) after the Instance Identifier of the Object.

Version string(32) The version of the DU affected. This MUST match the Version Parameter
contained within the instance of the DeploymentUnit that is contained
within the DeploymentUnitRef argument. In the case of an Install, this will
be the version of the DU created. In the case of an Update, it will be the
updated version of the DU. In the case of an Uninstall, it will be the
version of the uninstalled DU.

CurrentState string The current state of the affected DU. This state was attained either by
completing a requested Operation in the ChangeDUState method or
reflects the state of the DU after a failed attempt to change its state.

The following values are defined:

* Installed: The DU is in an Installed state due to one of the following:
successful Install, successful Update, failed Update, or failed Uninstall. In
the case of a failed Update or failed Uninstall the Fault argument will
contain an explanation of the failure.

* Uninstalled: The DU was successfully Uninstalled from the device.

* Failed: The DU could not be installed in which case a DU instance
MUST NOT be created in the Data Model.

Resolved boolean Whether or not the DU operation resolved all of its dependencies. In the
case of an Uninstall, this value is meaningless and SHOULD be true.

ExecutionUnitRefList string A comma-separated list of the Execution Units related to the affected DU.

Each Execution Unit (EU) in the list is a full Path Name of the
ExecutionUnit Object instance, including its Instance Identifier. The Path
Name MUST end with a “.” (dot) after the Instance Identifier of the Object.

In the case of an Install, this will be the list of EUs that were created as a
result of the DU’s installation.

In the case an Update, this will be the list of all EUs currently associated
with the updated DU, including those that were created through the initial
DU installation and any updates that had already occurred but not
including any EUs that no longer exist on the device because of this or
previous updates.

In the case of an Uninstall, this will be the list of the EUs removed from
the device due to the DU being removed.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 118 of 190

Name Type Description

StartTime dateTime The date and time the operation on the DU was started in UTC. The CPE
SHOULD record this information and report it in this argument, but if this
information is not available, the value of this argument MUST be set to the
Unknown Time value, as defined in Section 3.2 / TR-106 [13].

CompleteTime dateTime The date and time the operation on the DU was fully completed and
applied in UTC. The CPE SHOULD record this information and report it in
this argument, but if this information is not available, the value of this
argument MUST be set to the Unknown Time value, as defined in Section
3.2 / TR-106 [13].

Fault FaultStruct A FaultStruct as defined in Table 78. If the operation was successful, the
FaultCode MUST be zero. Otherwise a non-zero FaultCode is specified
along with a FaultString indicating the failure reason.

Table 78 – FaultStruct Definition

Name Type Description

FaultCode unsignedInt The numerical fault code as defined in Section A.5.1. In the case of a fault, allowed
values are: 9001, 9003, 9012, 9013, 9015, 9016, 9017, 9018, 9022, 9023, 9024, 9025,
9026, 9027, 9028, 9029, 9030, 9031 and 9032.

A value of 0 (zero) indicates no fault.

FaultString string(256) A human-readable text description of the fault. This field SHOULD be empty if the
FaultCode equals 0 (zero).

Appendix II.5 / TR-157 Amendment 3 [29] provides a description of the Software

Module Management faults. The following error conditions are some examples of how a

CPE could fail a specific operation:

 If the CPE cannot complete the operation for some unknown reason, it SHOULD

reject the operation with a 9001 (Request Denied) fault code.

 If the CPE detects the presence of the ―userinfo‖ component in the file source

URL, it SHOULD reject the operation with a 9003 (Invalid Arguments) fault

code.

 If the CPE cannot find the Execution Environment specified in the Install

operation, it SHOULD reject the operation with a 9023 (Unknown Execution

Environment) fault code.

 If the CPE determines that the Deployment Unit being installed does not match

either the Execution Environment specified or any Execution Environment on the

device, it SHOULD reject the operation with a 9025 (Deployment Unit to

Execution Environment Mismatch) fault code

 If the CPE determines that the Deployment Unit being updated does not match the

type of Execution Environment that it was previously installed against, it

SHOULD reject the operation with a 9025 (Deployment Unit to Execution

Environment Mismatch) fault code.

 If the CPE detects that the Deployment Unit being installed already has the same

version as one already installed on the same Execution Environment, it SHOULD

reject the operation with a 9026 (Duplicate Deployment Unit) fault code.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 119 of 190

 If the CPE detects that that there are no more system resources (disk space,

memory, etc.) to perform the Install or Update of a Deployment Unit, it SHOULD

reject the operation with a 9027 (System Resources Exceeded) fault code.

 If the CPE cannot find the Deployment Unit specified in the Update operation, it

SHOULD reject the operation with a 9028 (Unknown Deployment Unit) fault

code.

 If a requested operation attempts to alter the State of a Deployment Unit in a

manner that conflicts with the Deployment Unit State Machine Diagram

(Appendix II / TR-157 Amendment 3 [29]), the CPE SHOULD reject the

operation with a 9029 (Invalid Deployment Unit State) fault code.

 If a requested operation attempts to Uninstall a DU that caused an EE to come

into existence, where that EE has at least 1 installed DU or at least 1 child EE,

then the CPE SHOULD reject the operation with a 9029 (Invalid Deployment

Unit State) fault code.

Table 79 – DUStateChangeCompleteResponse Arguments

Argument Type Description

- void This method response has no arguments.

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8004,

8005.

A.4.2.4 AutonomousDUStateChangeComplete

This method informs the ACS of the completion (successful or unsuccessful) of a DU

state change that was not specifically requested via CWMP using the ChangeDUState

RPC. When used, this method MUST be called only after the CPE has completed any file

transfers and carried out all operations related to the Autonomous DU State Change.

This method MAY contain the results from multiple autonomous DU state changes; it is

implementation specific how the CPE chooses to aggregate the autonomous DU state

changes, although the CPE MUST notify the ACS of any autonomous DU state changes

within 24 hours of the time the operations were completed by the CPE. The CPE

SHOULD make every attempt to aggregate, as much as possible, the autonomous change

notifications to the ACS in the interest of scalability.

If the ACS fails this method, the CPE MUST NOT regard the ACS as having been

informed of the completion of the file transfer, and MUST attempt to call the method

again, either in the current session or in a new session, subject to the event delivery rules

of Section 3.7.1.5.

The calling arguments for this method are defined in Table 80. The arguments in the

response are defined in Table 83.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 120 of 190

Table 80 – AutonomousDUStateChangeComplete Arguments

Name Type Description

Results AutonOpResultStruct[] The results of Autonomous Operations performed against
DUs.

Table 81 – AutonOpResultStruct Definition

Name Type Description

UUID string(36) The UUID as defined in RFC 4122 [34] of the DU that was affected by the
autonomous state change. In the case of an Install, this will be the UUID
of the DU that was created. In the case of an Update or Uninstall, it will
be the existing UUID of the DU that was either updated or uninstalled.

DeploymentUnitRef string(256) A reference to the DU affected by the autonomous state change. In the
case of an Install, this is the DU that was created. In the case of an
Update, this is the DU that was updated. In the case of an Uninstall, this
is the DU that was removed.

The DU reference is a full Path Name of the DeploymentUnit Object
instance, including its Instance Identifier. The Path Name MUST end with
a “.” (dot) after the Instance Identifier of the Object.

Version string(32) The version of the DU that was affected by the autonomous state change.
This MUST match the Version Parameter contained within the instance of
the DeploymentUnit that is contained within the DeploymentUnitRef
argument. In the case of an Install, this will be the version of the DU
created. In the case of an Update, it will be the updated version of the
DU. In the case of an Uninstall, it will be the version of the uninstalled DU

CurrentState string The current state of the affected DU. This state was attained either by
completing an autonomous Operation or reflects the state of the DU after
a failed attempt to autonomously change its state.

The following values are defined:

* Installed: The DU is in an Installed state due to one of the following:
successful Install, successful Update, failed Update, or failed Uninstall. In
the case of a failed Update or failed Uninstall the Fault argument will
contain an explanation of the failure.

* Uninstalled: The DU was successfully uninstalled from the device.

* Failed: The DU could not be installed in which case the DU instance
MUST NOT be created in the Data Model.

Resolved boolean Whether or not the autonomous DU operation resolved all of its
dependencies. In the case of an Uninstall, this value is meaningless and
SHOULD be true.

ExecutionUnitRefList string A comma-separated list of the Execution Units related to the affected DU.

Each Execution Unit (EU) in the list is a full Path Name of the
ExecutionUnit Object instance, including its Instance Identifier. The Path
Name MUST end with a “.” (dot) after the Instance Identifier of the Object.

In the case of an Install, this will be the list of EUs that were created as a
result of the DU’s installation.

In the case an Update, this will be the list of all EUs currently associated
with the updated DU, including those that were created through the initial
DU installation and any updates that had already occurred, but not
including any EUs that no longer exist on the device because of this or
previous updates.

In the case of an Uninstall, this will be the list of the EUs removed from
the device due to the DU Un-Installation.

StartTime dateTime The date and time the autonomous operation on the DU was started in
UTC. The CPE SHOULD record this information and report it in this
argument, but if this information is not available, the value of this
argument MUST be set to the Unknown Time value, as defined in Section
3.2 / TR-106 [13].

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 121 of 190

Name Type Description

CompleteTime dateTime The date and time the autonomous operation on the DU was fully
completed and applied in UTC. The CPE SHOULD record this
information and report it in this argument, but if this information is not
available, the value of this argument MUST be set to the Unknown Time
value, as defined in Section 3.2 / TR-106 [13].

Fault FaultStruct A FaultStruct as defined in Table 82. If the autonomous operation was
successful, the FaultCode MUST be zero. Otherwise a non-zero
FaultCode is specified along with a FaultString indicating the failure
reason.

OperationPerformed string The operation that was performed against the DU via the autonomous
state change. The following values are defined:

Install – The autonomous Operation attempted was the Installation of a
DU.

Update – The autonomous Operation attempted was the Update of an
existing DU.

Uninstall – The autonomous Operation attempted was the Un-Installation
of an existing DU.

Table 82 – FaultStruct Definition

Name Type Description

FaultCode unsignedInt The numerical fault code as defined in Section A.5.1. In the case of a fault, allowed
values are: 9001, 9003, 9012, 9013, 9015, 9016, 9017, 9018, 9022, 9023, 9024, 9025,
9026, 9027, 9028, 9029, 9030, 9031 and 9032.

A value of 0 (zero) indicates no fault.

FaultString string(256) A human-readable text description of the fault. This field SHOULD be empty if the
FaultCode equals 0 (zero).

Appendix II.5 / TR-157 Amendment 3 [29] provides a description of the Software

Module Management faults. The following error conditions are some examples of how a

CPE could fail a specific operation:

 If the CPE cannot complete the operation for some unknown reason, it SHOULD

reject the operation with a 9001 (Request Denied) fault code.

 If the CPE detects the presence of the ―userinfo‖ component in the file source

URL, it SHOULD reject the operation with a 9003 (Invalid Arguments) fault

code.

 If the CPE cannot find the Execution Environment specified in the Install

operation, it SHOULD reject the operation with a 9023 (Unknown Execution

Environment) fault code.

 If the CPE determines that the Deployment Unit being installed does not match

either the Execution Environment specified or any Execution Environment on the

device, it SHOULD reject the operation with a 9025 (Deployment Unit to

Execution Environment Mismatch) fault code

 If the CPE determines that the Deployment Unit being updated does not match the

type of Execution Environment that it was previously installed against, it

SHOULD reject the operation with a 9025 (Deployment Unit to Execution

Environment Mismatch) fault code.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 122 of 190

 If the CPE detects that the Deployment Unit being installed already has the same

version as one already installed on the same Execution Environment, it SHOULD

reject the operation with a 9026 (Duplicate Deployment Unit) fault code.

 If the CPE detects that that there are no more system resources (disk space,

memory, etc.) to perform the Install or Update of a Deployment Unit, it SHOULD

reject the operation with a 9027 (System Resources Exceeded) fault code.

 If the CPE cannot find the Deployment Unit specified in the Update operation, it

SHOULD reject the operation with a 9028 (Unknown Deployment Unit) fault

code.

 If a requested operation attempts to alter the State of a Deployment Unit in a

manner that conflicts with the Deployment Unit State Machine Diagram

(Appendix II / TR-157 Amendment 3 [29]), the CPE SHOULD reject the

operation with a 9029 (Invalid Deployment Unit State) fault code.

 If a requested operation attempts to Uninstall a DU that caused an EE to come

into existence, where that EE has at least 1 installed DU or at least 1 child EE,

then the CPE SHOULD reject the operation with a 9029 (Invalid Deployment

Unit State) fault code.

Table 83 – AutonomousDUStateChangeCompleteResponse Arguments

Argument Type Description

- void This method response has no arguments.

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8004,

8005.

A.5 Fault Handling

A.5.1 CPE Fault Codes

Table 84 lists the fault codes that can be returned by a CPE. Note that the fault code

values are shown in decimal representation.

Table 84 – Fault codes

Fault code Description Type
24

9000 Method not supported Server

9001 Request denied (no reason specified) Server

9002 Internal error Server

9003 Invalid arguments Client

9004 Resources exceeded (when used in association with SetParameterValues, this
MUST NOT be used to indicate Parameters in error)

Server

24 The specified Type MUST be used to determine the value of the SOAP faultcode element as described in Section

3.5.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 123 of 190

Fault code Description Type
24

9005 Invalid Parameter name (associated with Set/GetParameterValues,
GetParameterNames, Set/GetParameterAttributes, AddObject, and DeleteObject)

Client

9006 Invalid Parameter type (associated with SetParameterValues) Client

9007 Invalid Parameter value (associated with SetParameterValues) Client

9008 Attempt to set a non-writable Parameter (associated with SetParameterValues) Client

9009 Notification request rejected (associated with SetParameterAttributes method). Server

9010 File transfer failure (associated with Download, ScheduleDownload,
TransferComplete or AutonomousTransferComplete methods).

Server

9011 Upload failure (associated with Upload, TransferComplete or AutonomousTrans-
ferComplete methods).

Server

9012 File transfer server authentication failure (associated with Upload, Download,
TransferComplete, AutonomousTransferComplete, DUStateChangeComplete, or
AutonomousDUStateChangeComplete methods).

Server

9013 Unsupported protocol for file transfer (associated with Upload, Download,
ScheduleDownload, DUStateChangeComplete, or
AutonomousDUStateChangeComplete methods).

Server

9014 File transfer failure: unable to join multicast group (associated with Download,
TransferComplete or AutonomousTransferComplete methods).

Server

9015 File transfer failure: unable to contact file server (associated with Download,
TransferComplete, AutonomousTransferComplete, DUStateChangeComplete, or
AutonomousDUStateChangeComplete methods).

Server

9016 File transfer failure: unable to access file (associated with Download,
TransferComplete, AutonomousTransferComplete, DUStateChangeComplete, or
AutonomousDUStateChangeComplete methods).

Server

9017 File transfer failure: unable to complete download (associated with Download,
TransferComplete, AutonomousTransferComplete, DUStateChangeComplete, or
AutonomousDUStateChangeComplete methods).

Server

9018 File transfer failure: file corrupted or otherwise unusable (associated with
Download, TransferComplete, AutonomousTransferComplete,
DUStateChangeComplete, or AutonomousDUStateChangeComplete methods).

Server

9019 File transfer failure: file authentication failure (associated with Download,
TransferComplete or AutonomousTransferComplete methods).

Server

9020 File transfer failure: unable to complete download within specified time windows
(associated with TransferComplete method).

Client

9021 Cancelation of file transfer not permitted in current transfer state (associated with
CancelTransfer method).

Client

9022 Invalid UUID Format (associated with DUStateChangeComplete or
AutonomousDUStateChangeComplete methods: Install, Update, and Uninstall)

Server

9023 Unknown Execution Environment (associated with DUStateChangeComplete or
AutonomousDUStateChangeComplete methods: Install only)

Server

9024 Disabled Execution Environment (associated with DUStateChangeComplete or
AutonomousDUStateChangeComplete methods: Install, Update, and Uninstall)

Server

9025 Deployment Unit to Execution Environment Mismatch (associated with
DUStateChangeComplete or AutonomousDUStateChangeComplete methods:
Install and Update)

Server

9026 Duplicate Deployment Unit (associated with DUStateChangeComplete or
AutonomousDUStateChangeComplete methods: Install only)

Server

9027 System Resources Exceeded (associated with DUStateChangeComplete or
AutonomousDUStateChangeComplete methods: Install and Update)

Server

9028 Unknown Deployment Unit (associated with DUStateChangeComplete or
AutonomousDUStateChangeComplete methods: Update and Uninstall)

Server

9029 Invalid Deployment Unit State (associated with DUStateChangeComplete or
AutonomousDUStateChangeComplete methods: Install, Update and Uninstall)

Server

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 124 of 190

Fault code Description Type
24

9030 Invalid Deployment Unit Update – Downgrade not permitted (associated with
DUStateChangeComplete or AutonomousDUStateChangeComplete methods:
Update only)

Server

9031 Invalid Deployment Unit Update – Version not specified (associated with
DUStateChangeComplete or AutonomousDUStateChangeComplete methods:
Update only)

Server

9032 Invalid Deployment Unit Update – Version already exists (associated with
DUStateChangeComplete or AutonomousDUStateChangeComplete methods:
Update only)

Server

9800 – 9899 Vendor defined fault codes -

A.5.2 ACS Fault Codes

Table 85 lists the fault codes that can be returned by an ACS. Note that the fault code

values are shown in decimal representation.

Table 85 – Fault codes

Fault code Description Type
24

8000 Method not supported Server

8001 Request denied (no reason specified) Server

8002 Internal error Server

8003 Invalid arguments Client

8004 Resources exceeded Server

8005 Retry request Server

8800 – 8899 Vendor defined fault codes -

A.6 RPC Method XML Schema

The XML schema, which is the normative definition for all RPC methods defined for the

CPE WAN Management Protocol, is specified in the referenced files below:

Protocol
Version

Namespace XSD

1.0 urn:dslforum-org:cwmp-1-0 http://www.broadband-forum.org/cwmp.php/cwmp-1-0.xsd

1.1 urn:dslforum-org:cwmp-1-1 http://www.broadband-forum.org/cwmp.php/cwmp-1-1.xsd

1.2 urn:dslforum-org:cwmp-1-2 http://www.broadband-forum.org/cwmp.php/cwmp-1-2.xsd

1.3 urn:dslforum-org:cwmp-1-2 http://www.broadband-forum.org/cwmp.php/cwmp-1-3.xsd

1

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 125 of 190

Annex B. Removed

Annex Removed.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 126 of 190

Annex C. Signed Vouchers

Note – the mechanism defined in this Annex is DEPRECATED in favor of the

―Software Module Management mechanism‖ as described in Appendix II / TR-157

Amendment 3 [29].

C.1 Overview

The CPE WAN Management Protocol defines an optional mechanism for securely

enabling or disabling optional CPE capabilities. Unlike Parameters, the Voucher

mechanism provides an additional layer of security for optional capabilities that require

secure tracking (such as those involving payment).

A Voucher is a digitally signed data structure that instructs a CPE to enable or disable a

set of Options. An Option is any optional capability of a CPE. When an Option is

enabled, the Voucher can specify various characteristics that determine under what

conditions that Option persists.

C.2 Control of Options Using Vouchers

An Option can be disabled, enabled, or enabled with expiration. An Option that is

enabled with no expiration stays enabled until the ACS explicitly disables it. An Option

that is enabled with expiration stays enabled only for the duration specified in the

Voucher. After the specified duration period, the CPE MUST disable the Option itself.

An Option can also be defined as either transferable or non-transferable. If not otherwise

specified, an Option enabled by a Voucher is non-transferable. A non-transferable

Option is automatically disabled if the CPE becomes associated with a different

broadband service provider than was in use at the time the Option was enabled. A

transferable Option is one that is maintained with the CPE regardless of any subsequent

changes of service provider.

Each Voucher, which can contain instructions to enable or disable one or more Options,

MUST be digitally signed using the XML-Signature format [15]. Before applying the

instructions in the Voucher, a CPE MUST validate the signature and authenticate the

signer.

A Voucher is specific to a single CPE and cannot be used on a CPE other than the one

indicated in the Voucher. This ensures that the mechanism used to distribute Vouchers

can be used to ensure that only those CPEs that have properly appropriated an Option can

enabled that Option.

A CPE supporting the use of Vouchers MUST support a network time synchronization

protocol such as NTP or SNTP to ensure access to accurate time and date information.

http://www.w3.org/2000/09/xmldsig

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 127 of 190

Application of a received voucher by the CPE, or comparison of an existing voucher

against its expiration date, SHOULD only occur once the CPE has established network

time.

The following Voucher-related methods are defined in Annex A of this specification:

 SetVouchers: Allows an ACS to download a list of Vouchers to a CPE. Each

Voucher MAY enable or disable the Options defined within that Voucher.

 GetOptions: Allows an ACS to query the state of any or all Options supported by the

CPE.

C.3 Voucher Definition

The RPC method SetVouchers allows an ACS to enable, disable, or modify the state of

one or more Options. The SetVouchers method takes as an argument an array of

Vouchers. Each Voucher in the array is separately Base64 encoded.

Prior to Base64 encoding, each Voucher is a signed XML structure utilizing the XML-

Signature format [15]. Each independently signed Voucher MAY include one or more

Option specifications. Each Option specification is a structure that specifies the intended

state for the specified Option.

The elements of the Option specification are defined in Table 86. An Option MAY

contain additional XML elements specific to the particular Option. An example Option

specification structure is shown in Figure 5. An example of an entire signed Voucher is

shown in Figure 6. In this example, two separate Options are enabled in the same

Voucher.

Table 86 – Option specification definition

Name Type Description

VSerialNum string(64) Unique serial number identifying the particular Voucher. For a given
ACS, each new Voucher created MUST be assigned a distinct
Voucher serial number. This value MUST be unique across all CPE
managed by that ACS and all Vouchers issued to a given CPE at
different times.

DeviceId DeviceIdStruct A structure that uniquely identifies the particular CPE for which the
Voucher is to apply. This structure is defined in Table 87.

On receipt of a Voucher, a CPE MUST ensure that the information in
the device ID matches its actual identity. If not, it MUST ignore the
Voucher and respond with a Request Denied fault.

OptionIdent string(64) Identifying name of the particular Option to be enabled or disabled.

OptionDesc string(256) Text description of the Option.

StartDate dateTime Optional element. The date and time in UTC that the Option is to be
enabled (only meaningful if Mode = EnableWithExpiration or
EnableWithoutExpiration). If this element is not present, or if the
specified time has already passed, an Option to be enabled is
enabled immediately.

Duration unsignedInt Required if Mode = EnableWithExpiration. For an Option enabled
with expiration, this element specifies the duration the Option will
remain enabled in units of DurationUnits. If a start date is specified,
the duration is relative to that start date.

http://www.w3.org/2000/09/xmldsig
http://www.w3.org/2000/09/xmldsig

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 128 of 190

Name Type Description

DurationUnits string Required if Mode = EnableWithExpiration. This element specifies the
units in which the duration element is specified. The allowed values
are:

“Days”

“Months”

Mode string This element specifies whether the designated Option is to be
enabled or disabled, and if enabled, whether or not an expiration is
specified. The allowed values are:

“Disable”

“EnableWithExpiration

“EnableWithoutExpiration

Transferable boolean Optional element. A value of true (1) indicates that the Option is
considered transferable, meaning that Option is to remain enabled
until any specified expiration date regardless of any changes in
service provider.

If this element is false (0) or not present, the Option is considered
non-transferable, requiring the Option be disabled upon change in
service provider, associated with any change to the ProvisioningCode
as defined in [24], [31], and [32].

Table 87 – DeviceIdStruct definition

Name Type Description

Manufacturer string(64) The manufacturer of the device. This parameter is for display only and
need not be checked as part of the validation.

OUI string(6) Organizationally unique identifier of the device manufacturer. Represented
as a six hexadecimal-digit value using all upper-case letters and including
any leading zeros. The value MUST be a valid OUI as defined in [10].

ProductClass string(64) Identifier of the class of product for which the serial number applies. That
is, for a given manufacturer, this parameter is used to identify the product
or class of product over which the SerialNumber parameter is unique.

SerialNumber string(64) Identifier of the particular device that is unique for the indicated class of
product and manufacturer.

Figure 5 – Example Option specification

<dsig:Object xmlns="" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" Id="option0">

 <Option>

 <VSerialNum>987654321</VSerialNum>

 <DeviceId>

 <Manufacturer>Example</Manufacturer>

 <OUI>012345</OUI>

 <ProductClass>Gateway</ProductClass>

 <SerialNumber>123456789</SerialNumber>

 </DeviceId>

 <OptionIdent>Option Name</OptionIdent>

 <OptionDesc>Option Description</OptionDesc>

 <StartDate>20021025T12:06:34</StartDate>

 <Duration>280</Duration>

 <DurationUnits>Days</DurationUnits>

 <Mode>EnableWithExpiration</Mode>

 </Option>

</dsig:Object>

Figure 6 – Example signed Voucher

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"></CanonicalizationMethod>

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 129 of 190

 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-

sha1"></SignatureMethod>

 <Reference URI="#option0">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"></Transform>

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"></DigestMethod>

 <DigestValue>TUuSqr2utLtQM5tY2DB1jL3nV00=</DigestValue>

 </Reference>

 <Reference URI="#option1">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"></Transform>

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"></DigestMethod>

 <DigestValue>/YX1C/E6zNf0+w4lG66NeXGOQB0=</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>

 KAMfqOSnmGH52qRVGLNFEEM4PPkRSmMUGr2D8E3vwwW280e1Bn5pwQ==

 </SignatureValue>

 <KeyInfo>

 <KeyValue>

 <DSAKeyValue>

 <P>

 /X9TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUftZPY1Y+r/F9bow9s

 ubVWzXgTuAHTRv8mZgt2uZUKWkn5/oBHsQIsJPu6nX/rfGG/g7V+fGqKYVDwT7g/bT

 xR7DAjVUE1oWkTL2dfOuK2HXKu/yIgMZndFIAcc=

 </P>

 <Q>l2BQjxUjC8yykrmCouuEC/BYHPU=</Q>

 <G>

 9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0HgmdRWVeOutRZT+ZxBxCBgLRJFn

 Ej6EwoFhO3zwkyjMim4TwWeotUfI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTx

 vqhRkImog9/hWuWfBpKLZl6Ae1UlZAFMO/7PSSo=

 </G>

 <Y>

 TBASA/mjLI8bc2KM7u9X6nHHvjmPgZtTBhr1/Fzs2AkdYCYMwyy+v+OXU7u5e18JuK

 G7/uolVhjXNSn6ZgObF+wuMoyP/OUmNbSkdN1aRXXHPRsW2CcG3vjfV+Csg/LP3zfD

 xDkImsC8LuKXht/g4+nksA/3icRQXWagQJU9pUQ=

 </Y>

 </DSAKeyValue>

 </KeyValue>

 <X509Data>

 <X509IssuerSerial>

 <X509IssuerName>

 EMAILADDRESS=name@example.com,CN=Example,OU=CMS,O=Example,L=San\20Jose,

ST=California,C=US

 </X509IssuerName>

 <X509SerialNumber>4</X509SerialNumber>

 </X509IssuerSerial>

 <X509SubjectName>

 CN=eng.bba.certs.example.com,OU=CMS,O=Example,L=San\20Jose,ST=CA,C=US

 </X509SubjectName>

 <X509Certificate>

MIIEUjCCA7ugAwIBAgIBBDANBgkqhkiG9w0BAQUFADCBhDELMAkGA1UEBhMCVVMxEzARBgNVBAgT

CkNhbGlmb3JuaWExETAPBgNVBAcTCFNhbiBKb3NlMQ4wDAYDVQQKEwUyV2lyZTEMMAoGA1UECxMD

Q01TMQ4wDAYDVQQDEwUyV2lyZTEfMB0GCSqGSIb3DQEJARYQZWJyb3duQDJ3aXJlLmNvbTAeFw0w

MjA5MDUyMDU4MTZaFw0xMjA5MDIyMDU4MTZaMG0xCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDQTER

MA8GA1UEBxMIU2FuIEpvc2UxDjAMBgNVBAoTBTJXaXJlMQwwCgYDVQQLEwNDTVMxIDAeBgNVBAMT

F2VuZy5iYmEuY2VydHMuMndpcmUuY29tMIIBtzCCASwGByqGSM44BAEwggEfAoGBAP1/U4EddRIp

Ut9KnC7s5Of2EbdSPO9EAMMeP4C2USZpRV1AIlH7WT2NWPq/xfW6MPbLm1Vs14E7gB00b/JmYLdr

mVClpJ+f6AR7ECLCT7up1/63xhv4O1fnxqimFQ8E+4P208UewwI1VBNaFpEy9nXzrith1yrv8iID

GZ3RSAHHAhUAl2BQjxUjC8yykrmCouuEC/BYHPUCgYEA9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC

+VdMCz0HgmdRWVeOutRZT+ZxBxCBgLRJFnEj6EwoFhO3zwkyjMim4TwWeotUfI0o4KOuHiuzpnWR

bqN/C/ohNWLx+2J6ASQ7zKTxvqhRkImog9/hWuWfBpKLZl6Ae1UlZAFMO/7PSSoDgYQAAoGATBAS

A/mjLI8bc2KM7u9X6nHHvjmPgZtTBhr1/Fzs2AkdYCYMwyy+v+OXU7u5e18JuKG7/uolVhjXNSn6

ZgObF+wuMoyP/OUmNbSkdN1aRXXHPRsW2CcG3vjfV+Csg/LP3zfDxDkImsC8LuKXht/g4+nksA/3

icRQXWagQJU9pUSjgdAwgc0wHQYDVR0OBBYEFMTl/ebdHLjaEoSS1PcLCAdFX32qMIGbBgNVHSME

gZMwgZChgYqkgYcwgYQxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMREwDwYDVQQH

EwhTYW4gSm9zZTEOMAwGA1UEChMFMldpcmUxDDAKBgNVBAsTA0NNUzEOMAwGA1UEAxMFMldpcmUx

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 130 of 190

HzAdBgkqhkiG9w0BCQEWEGVicm93bkAyd2lyZS5jb22CAQAwDgYDVR0PAQH/BAQDAgeAMA0GCSqG

SIb3DQEBBQUAA4GBAF1PGAbyvA0p+6o7nXfF3jzAdoHdaZh55C8sOQ9J62IF8D1jl6JxR7pjcCp2

iYmWkwQMncGfq+X8xP7BIqntDmIlYXuDTlXbyxXsu6lnT7nCbJwMwlLOxFwN+Axy7BM3NkAFE5Mb

aaoJWtmD1QrvcAFfDhLeBT+tIRueK7Pq9LDS

 </X509Certificate>

 <X509Certificate>

MIICeTCCAeICAQAwDQYJKoZIhvcNAQEEBQAwgYQxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxp

Zm9ybmlhMREwDwYDVQQHEwhTYW4gSm9zZTEOMAwGA1UEChMFMldpcmUxDDAKBgNVBAsTA0NNUzEO

MAwGA1UEAxMFMldpcmUxHzAdBgkqhkiG9w0BCQEWEGVicm93bkAyd2lyZS5jb20wHhcNMDEwNzMx

MDMwNjQ5WhcNMDcwMTIxMDMwNjQ5WjCBhDELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3Ju

aWExETAPBgNVBAcTCFNhbiBKb3NlMQ4wDAYDVQQKEwUyV2lyZTEMMAoGA1UECxMDQ01TMQ4wDAYD

VQQDEwUyV2lyZTEfMB0GCSqGSIb3DQEJARYQZWJyb3duQDJ3aXJlLmNvbTCBnzANBgkqhkiG9w0B

AQEFAAOBjQAwgYkCgYEA1ISJbL6i0J/6SBoet3aA8fki8s7pb/QUZueWj+0YKoDaQWh4MUCT0K06

N/0Z2cLMVg8JyezEpdnh3lVM/Ni5ow2Mst4dpdccQQEHouqwNUWIBFU196/LPRyLjoM2NeIXSKMj

AdPwvcenxmqeVBr/ZUmr4JQpdSI2AZJuHvCIjUsCAwEAATANBgkqhkiG9w0BAQQFAAOBgQBa3CCX

ga9L0qrGWxpNj312Az+tYz8bpEp2e2pAVrJHdW/CJ0uRlE341oTkhfYFa5CuuieF7Jcwf1B3+cGo

JrLWqeKqsNnrbmMFC/9hnrLlgZKEKi0POaGSFS/Pw9nodGWFZCiaQmeG+J6CWeASiFMdwgRGvESW

axfzzIKiXsXwkA==

 </X509Certificate>

 </X509Data>

 </KeyInfo>

 <dsig:Object xmlns="" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" Id="option0">

 <Option>

 <VSerialNum>987654321</VSerialNum>

 <DeviceId>

 <Manufacturer>Example</Manufacturer>

 <OUI>012345</OUI>

 <ProductClass>Gateway</ProductClass>

 <SerialNumber>123456789</SerialNumber>

 </DeviceId>

 <OptionIdent>First option name</OptionIdent>

 <OptionDesc>First option description</OptionDesc>

 <StartDate>20021025T12:06:34</StartDate>

 <Duration>280</Duration>

 <DurationUnits>Days</DurationUnits>

 <Mode>EnableWithExpiration</Mode>

 </Option>

 </dsig:Object>

 <dsig:Object xmlns="" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" Id="option1">

 <Option>

 <VSserialNum>987654322</VSerialNum>

 <DeviceId>

 <Manufacturer>Example</Manufacturer>

 <OUI>00D09E</OUI>

 <ProductClass>Gateway</ProductClass>

 <SerialNumber>123456789</SerialNumber>

 </DeviceId>

 <OptionIdent>Second option name</OptionIdent>

 <OptionDesc>Second option description</OptionDesc>

 <StartDate>20021025T12:06:34</StartDate>

 <Duration>280</Duration>

 <DurationUnits>Days</DurationUnits>

 <Mode>EnableWithExpiration</Mode>

 </Option>

 </dsig:Object>

</Signature>

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 131 of 190

Annex D. Web Identity Management

Note–the mechanism defined in this Annex is DEPRECATED and might be

removed from a future version of this document. This is because, considering

CSRF (cross-site request forgery) and XSS (cross-site scripting), the home

network is no longer a trusted environment. JavaScript downloaded from the

Internet could allow a malicious script to perform redirects and connect to a web

site or portal with the ―unknowing‖ subscriber web identity.

D.1 Overview

To support web-based applications or other CPE-related web pages on a back-end web

site for access from a browser within the CPE‘s local network, the CPE WAN

Management Protocol provides an optional mechanism that allows such web sites to

customize their content with explicit knowledge of the customer associated with that

CPE. That is, the location of users browsing from inside the CPE‘s LAN can be

automatically identified without any manual login process.

The protocol defines a set of optional interfaces that allow the web site to initiate

communication between the CPE and ACS, which allows a web site in communication

with that ACS to identify which CPE the user is operating behind. This allows the web

site to customize its content to be specific to the associated broadband account, the

particular type of CPE, or any other characteristic that is known to the ACS.

Note—this identification mechanism does not distinguish among different users on the same

network behind a single CPE. In situations where identification of a specific user is required, a

separate identity management mechanism, such as manual login, would be needed.

D.2 Use of the Kicked RPC Method

The CPE WAN Management Protocol defines an optional Kicked RPC method in Annex

A, which can be used to support web identity management functionality.

The CPE‘s invocation of the Kicked method is initiated by an external stimulus to the

CPE. This external stimulus is assumed to be web-based, and thus the associated method

provides a means to communicate information that would be useful in a web-based

transaction. A suggested definition of the stimulus interface is given in Section D.4.

The information contained in the Kicked method call includes both the information

needed to uniquely identify the CPE, but also parameters that can be used to associate the

method call with a particular web browser session.

The response to the Kicked method allows the ACS to specify a URL to which the

browser SHOULD be redirected. This URL MAY contain CGI arguments that allow the

ACS to continue to track the browser session.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 132 of 190

D.3 Web Identity Management Procedures

The Web Identity Management mechanism is based on a model in which a web server is

associated with and can communicate with an ACS. Whenever this web server wishes to

either identify the user‘s CPE or cause the CPE to establish communication with the ACS

for some other purpose, the following sequence of events will occur (under normal

conditions):

1. The user‘s browser accesses a web page that requires knowledge of, or

communication with, the user‘s CPE.

2. The web site redirects the browser to a specific URL accessible only from the CPE‘s

private-network (LAN) interface through which the browser ―kicks‖ the CPE,

providing the CPE via CGI arguments with information it needs to follow the

subsequent steps (see Section D.4).

3. The CPE notifies the ACS that it has been kicked, using the ―Kicked‖ RPC method

call defined in Annex A. In this method call, the CPE identifies itself and passes

information to uniquely identify the browser session.

4. The ACS responds to this method call by passing a URL that the CPE SHOULD

redirect the user‘s browser. This URL would normally include CGI arguments that

identify the session state. While the connection is open, the ACS MAY also initiate

any other appropriate RPC transactions.

5. The CPE responds to the browser‘s HTTP request by redirecting the browser to the

URL indicated by the ACS.

This exchange allows the ACS to uniquely identify the CPE; potentially generate a

custom page based on knowledge of the particular user, their equipment, and any

associated account privileges; and then direct the user to that customized page.

The ACS MAY also initiate any other RPC transactions that are appropriate given the

particular user action. For example, if a user requests a firmware upgrade to their CPE

from a web page, the ACS could instruct the CPE to initiate a file download over the

same connection that the ACS responds to the Kicked method call.

Figure 7 shows the sequence of events associated with this mechanism. The numbers

shown correspond to the step numbers above.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 133 of 190

Figure 7 – Sequence of events for the “kick” mechanism

B-NT

ACS

Web Site

Access

Network

1

2

3

4

5

D.4 LAN Side Interface

A CPE MAY support web identity management by providing a LAN-side web URL

accessible from a browser operating on the local network.

The associated web server in the CPE SHOULD support CGI arguments to be passed to

corresponding arguments in the Kicked RPC method defined in Annex A. The

RECOMMENDED arguments are listed in Table 88.

Table 88 – Recommended CGI Arguments for the kick URL

Name Type Value

command string(32) The value to be passed in the Command argument of the Kicked
method call. This CGI argument allows the ACS to identify a command
it is to perform in response to the resulting Kicked method call.

arg string(256) The value to be passed in the Arg argument of the Kicked method call.
This CGI argument MAY be used by the ACS to pass arguments for
the corresponding command. The particular uses for this argument are
not defined.

next string(1024) The value to be passed in the Next argument of the Kicked method
call. This contains the URL the web site wishes the browser be sent
after the Kicked process has completed. The ACS processing the
Kicked method MAY override this request and return a different URL in
the Kicked response.

To initiate the kick process, the browser would be sent to the CPE‘s URL, for example

via an HTTP 302 redirect or via a form post. This access would include the CGI

arguments as defined in Table 88. For example, the browser might be redirected to:

http://cpe-host-

name/kick.html?command=<#>&arg=<arg>&next=<url>

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 134 of 190

After the CPE receives the corresponding HTTP GET request, the CPE SHOULD initiate

a Kicked method call, using the CGI arguments to fill in the method arguments as

defined in Annex A.

The CPE SHOULD limit the number of Kicked method calls it sends to the ACS per hour

to a defined maximum value. Receiving a kick request that would result in exceeding

this maximum value is considered a security violation and SHOULD NOT result in a call

to the Kicked method.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 135 of 190

Annex E. Signed Package Format

Note – the mechanism defined in this Annex is DEPRECATED in favor of the ―Software Module

Management mechanism‖ as described in Appendix II / TR-157 Amendment 3 [29].

E.1 Introduction

This document specifies a signed package format that MAY be used to securely

download files into a recipient device. The format allows one or more files to be

encapsulated within a single signed package. The package format allows the recipient to

authenticate the source, and contains instructions for the recipient to extract and install

the contents.

The signed package format is intended to be used for download from a server via HTTP,

HTTPS, or FTP file transfer, or via other means of file transfer from a remote or local

source.

E.2 Signed Package Format Structure

The basic format of a signed package file is shown in Figure 8.

Figure 8 – Signed package format

Fixed length

header

Payload

files

Signatures

Command

list

A general description of each of the signed package format components is given in Table

89.

Table 89 – Signed package component summary

Component Description

Header The header is a fixed-length structure including a preamble, format version, and the lengths of
the command list and payload components.

Command list The command list contains a sequence of instructions to be followed in extracting and installing
the files contained within the package.

Each command is in the form of a type-length-value (TLV).

Signatures This section of the package contains a PKCS #7 digital signature block containing a set of zero
or more digital signatures as described in Section E.5.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 136 of 190

Component Description

Payload files This section of the package contains one or more files to be installed following the instructions in
the command list.

This document does not define any specific payload file formats.

E.2.1 Encoding Conventions

The following encoding conventions are used throughout this specification unless

explicitly stated otherwise:

 Multi-octet numeric values are encoded in network byte order (big endian format).

 File or directory Path names are specified in UNIX format (e.g., ―/dir/dir/base.ext‖).

E.3 Header Format

The signed package header is a fixed-length 24-octet structure. The format of the header

is defined in Table 90.

Table 90 – Signed package header format

Field Type Description

Preamble 8 octets A fixed sequence of octets containing the following hexadecimal values:

32 57 49 52 45 5F 53 50

An interpreter of the signed package format MUST verify that the preamble
contains exactly this sequence of values for the package to be considered valid.

Major version 32-bit integer Value indicating the major component of the package format version. An
implementation conforming to this specification has a major version of 1 (one).

Changes to the major version denote incompatible changes to this format.

Minor version 32-bit integer Value indicating the minor component of the package format version. An
implementation conforming to this specification has a minor version of 0 (zero).

Changes to the minor version denote compatible changes to the package format.
An implementation implementing this version of the specification SHOULD be
capable of interpreting packages encoded using a format with a different minor
version value.

Command list
length

32-bit integer Length in octets of the command list. The command list length MUST be less
than 2

16
.

Payload
length

32-bit integer Length in octets of the payload, including all files contained within it.

E.4 Command List Format

Each command in the command list has a format specified in Table 91.

Table 91 – Command format

Field Type Description

Type 32-bit integer Specifies the particular command.

Length 32-bit integer Specifies the length in octets of the Value field. The total length of the command
is Length + 8 octets.

Value (Conditional) Zero or more octets of parameters associated with the particular command type.

If a recipient of this file format finds a Type value that is unknown to it, it MUST ignore

the command and continue parsing the remainder of the package, using the Length value

to skip to the next command, if any.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 137 of 190

E.4.1 Command Types

The command list contains two types of commands: package parameters and actions to

be taken. Examples of package parameters include the software version of a contained

software image or a timeout for the remainder of the download. Examples of actions are

add, remove, and move. The actions taken together in the order specified in the

command list define the sequence of modifications to the file system required to extract

and install the contained files.

The file-related commands have two variants: one that operates on explicit files and

another that operates on versioned files. The name of a versioned file has a fixed ―base‖

up to 8 characters in length, and an ―extension‖ that is 3 characters in length. Each time

the content of a versioned file is updated, the file extension is changed to a new value that

indicates the file version. Because of this, if an upgrade needs to replace a versioned file,

any existing file with the same base name but different extension MUST be removed.

The specific commands defined by this specification are listed in Table 92.

Table 92 – Command Type summary

Type Command name

0 End

1 Extract File

2 Extract Versioned File

3 Add File

4 Add Versioned File

5 Remove File

6 Remove Versioned File

7 Remove Sub-Tree

8 Move File

9 Move Versioned File

10 Version

11 Description

12 Recoverable Timeout

13 Unrecoverable Timeout

14 Initial Timeout

15 Initial Activity Timeout

16 Reboot

17 Format File System

18 Minimum Version

19 Maximum Version

20 Role

21 Minimum Non-Volatile Storage

22 Minimum Volatile Storage Size

23 Reserved

24 Reserved

25 Required Attributes

1000-
9999

Vendor-specific commands

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 138 of 190

E.4.2 End Command

This command signifies the end of the command list. This command need not be present

in a command list, but if encountered a recipient MUST stop parsing the remainder of the

command list portion of the package.

The Length parameter for this command MUST be 0 (zero), indicating that no Value

field follows.

E.4.3 Extract and Add Commands

The extract and add commands include Extract File, Extract Versioned File, Add File,

and Add

Versioned File.

The extract commands instruct the recipient to remove any existing file of the same name

and replace it with the specified file in the payload.

The add commands instruct the recipient to first check for an existing file of the same

name, and only install the new file if no existing file can be found.

For the versioned file variants of these commands, the above operations consider an

existing file as any file that has the same base name as the specified file. That is, the

Extract Versioned File command removes all existing files with the same base name and

any extension prior to installing the new file. Similarly, the Add Versioned File

command checks for any file with the same base name as the specified file, regardless of

extension, and only installs the new file if no such file can be found.

When a new file is to be created in a directory that does not exist, the recipient MUST

create the required directory.

All of the extract and add commands include information in the Value portion of the

command. The format of this information is defined in Table 93.

Table 93 – Value format for the extract and add commands

Field Type Description

Flags 32-bit integer A bit-field defined as follows:

Bit 0 (LSB): Unsafe Flag. A 1 (one) value of this flag indicates that if this
command completes successfully, but a subsequent command in the
command list fails, the recipient device will be left in an unsafe state, and
SHOULD follow its procedures for recovery of its file system to a known
safe state.

All other bits are reserved and MUST be set to 0 (zero) and MUST be ignored by
the recipient.

Path Offset 32-bit integer The offset in octets from the beginning of the Value field to the Path field in this
command.

Path Length 32-bit integer The length of the Path field in octets.

Hash Type 32-bit integer Type of hash algorithm used in creating the Hash field. The following values are
currently defined:

1 = SHA-1. When set to this value, the Hash field contains the 20-octet SHA-1
hash of the specified file. The Hash Length value in this case MUST be set to 20
(decimal).

All other values are reserved.

Hash Offset 32-bit integer The offset in octets from the beginning of the Value field to the Hash field in this
command.

Hash Length 32-bit integer The length of the Hash field in octets.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 139 of 190

Field Type Description

File Offset 32-bit integer The offset in octets from the beginning of the payload portion of the package to
the beginning of the specified file.

File Length 32-bit integer The length of the file payload in octets. The actual contents of the file are found
in the file payload portion of the package.

Path String of length
Path Length

Path of the specified file, including the directory tree and file name.

Hash Octet string of
length Hash
Length

Hash of the payload file using the hash algorithm defined in the Hash Type field.
The hash of the payload file is included in the command because the signatures
validate only the package header and command list. By including the file hash in
the command, the signature ensures the validity of the file contents.

E.4.4 Remove Commands

The remove commands include Remove File, Remove Versioned File, and Remove Sub-

Tree.

The Remove File command removes the file with the specified path, if it exists.

The Remove Versioned File command removes all files with the same base as the

specified file, regardless of extension.

The Remove Sub-Tree command removes all files and directories beneath and including

the specified path.

All of the remove commands include information in the Value portion of the command.

The format of this information is defined in Table 94.

Table 94 – Value format for the remove commands

Field Type Description

Flags 32-bit integer A bit-field defined as follows:

Bit 0 (LSB): Unsafe Flag. A 1 (one) value of this flag indicates that if this
command completes successfully, but a subsequent command in the
command list fails, the recipient device will be left in an unsafe state, and
SHOULD follow its procedures for recovery of its file system to a known
safe state.

All other bits are reserved and MUST be set to 0 (zero) and MUST be ignored by
the recipient.

Path Offset 32-bit integer The offset in octets from the beginning of the Value field to the Path field in this
command.

Path Length 32-bit integer The length of the Path field in octets.

Path String of length
Path Length

Path of the specified file or directory.

E.4.5 Move Commands

The move commands include Move File and Move Versioned File.

The Move File command renames a file to the name specified in this command. If the

destination path specified indicates a different directory, the file is moved to the indicated

destination directory.

The Move Versioned File command moves a file matching the base name of the file

specified in the source path, regardless of the extension. If more than one such file exists

in the specified directory, only one of the files is moved and the others are deleted. If the

versioned file extension string is a decimal number, then the lowest numbered file is

moved and the rest are deleted.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 140 of 190

In all cases, if there is already a file with the same path as the specified destination file,

the move commands will overwrite that file.

If the source file specified in a move command does not exist, no action is taken, and the

recipient continues to process the remaining commands in the command list.

All of the move commands include information in the Value portion of the command.

The format of this information is defined in Table 95.

Table 95 – Value format for the move commands

Field Type Description

Flags 32-bit integer A bit-field defined as follows:

Bit 0 (LSB): Unsafe Flag. A 1 (one) value of this flag indicates that if this
command completes successfully, but a subsequent command in the
command list fails, the recipient device will be left in an unsafe state, and
SHOULD follow its procedures for recovery of its file system to a known
safe state.

All other bits are reserved and MUST be set to 0 (zero) and MUST be ignored by
the recipient.

Source Path
Offset

32-bit integer The offset in octets from the beginning of the Value field to the Source Path field
in this command.

Source Path
Length

32-bit integer The length of the Source Path field in octets.

Destination
Path Offset

32-bit integer The offset in octets from the beginning of the Value field to the Destination Path
field in this command.

Destination
Path Length

32-bit integer The length of the Destination Path field in octets.

Source Path String of length
Source Path
Length

Path of the source file.

Destination
Path

String of length
Destination Path
Length

Path of the destination to which the source file is to be moved/renamed.

E.4.6 Version and Description Commands

The Value field for both the Version and Description commands contain a single UTF-8

string to be used for informational, display, or logging purposes.

The Version field is intended to indicate the overall version associated with the package.

For example, if the package contains a software upgrade (which can include many

individual files), the Version field MAY be used to indicate the new software version

associated with the upgrade.

E.4.7 Timeout Commands

The timeout commands include Initial Timeout, Initial Activity Timeout, Recoverable

Timeout, and Unrecoverable Timeout.

The timeout commands specify a timeout value for the continued download of the

package file before the download SHOULD be terminated. These commands are to

accommodate the case where the command and signature portions of the package are

downloaded and interpreted prior to downloading the remainder of the package file. The

timeout commands MAY be used to control the timeout parameters associated with a

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 141 of 190

download process of this type. If the package is downloaded or received as a whole prior

to interpreting the package contents, the timeout commands MAY be ignored.

Each timeout command includes information in the Value portion of the command. The

format of this information is defined in Table 96.

Table 96 – Value format for the timeout commands

Field Type Description

Timeout 32-bit Integer The timeout value in seconds relative to the beginning of the package download
operation. A value of 0 (zero) indicates an infinite timeout.

Each of the timeout commands allows a distinct timeout value to be specified, where the

Timeout field in that command indicates the desired value. The use of each timeout

value is based on the state of the recipient as it processes commands using the state

transition model shown in Figure 9. The figure shows the state transitions that occur as

each command in the command list is processed in sequence. For each command

processed, the state remains the same until one of the cases indicated by the state

transition arrows occurs.

Figure 9 – Download state diagram used for timeout model

Recoverable

State

Unrecoverable

State

Start

download
Install complete

Remove command

w/ Unsafe flag = 0

Extract, Add, Move, or Remove

w/ Unsafe flag = 1

OR Format File System

End

End

End

Extract, Add, Move, or Remove

w/ Unsafe flag = 1

OR Format File System

Initial State

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 142 of 190

The above state diagram is used during a download to determine which timeout values to

use. The definition of each of the timeout types associated with the timeout commands is

shown in Table 97.

Table 97 – Timeout command definitions

Command Description

Initial Timeout This command sets the download timeout used during the Initial State as shown in
Figure 9. This timeout is measured from the time the overall package download
began.

Initial Activity Timeout This command sets an activity timeout to be used only during the Initial State as
shown in Figure 9. The activity timeout is measured from the most recent time any
package data had been transferred to the recipient.

Note that during all states other than the Initial State, there is no activity timeout (the
activity timeout is infinite).

Recoverable Timeout This command sets the download timeout used during the Recoverable State as
shown in Figure 9. This timeout is measured from the time the overall package
download began.

Unrecoverable Timeout This command sets the download timeout used during the Unrecoverable State as
shown in Figure 9. This timeout is measured from the time the overall package
download began.

E.4.8 Reboot Command

This command indicates that the recipient reboot in order to complete the installation

process. If used, this command MUST be the last command in the command list (other

than End, if present).

The Length parameter for this command MUST be 0 (zero), indicating that no Value

field follows.

E.4.9 Format File System

This command indicates that the recipient reformat its file system as part of the

installation process. If used, this command implies that all existing files in the file

system (or the portion of the file system relevant for the installation process) are to be

cleared and overwritten by the new files in the package.

The Length parameter for this command MUST be 0 (zero), indicating that no Value

field follows.

E.4.10 Minimum and Maximum Version Commands

The Minimum Version and Maximum Version commands are used to specify the range

of software version numbers for which the package is intended to apply.

When a minimum and/or maximum version number is specified in the package using

these commands, the recipient MUST NOT install the files or take any other action

specified in the command list if the software version of the recipient falls outside the

indicated range.

This command MAY be used only if the format of the actual software version associated

with the recipient is in a hierarchical format that can be compared numerically given the

procedures outlined below.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 143 of 190

The minimum and maximum version commands include information in the Value portion

of the command. The format of this information is defined in Table 98.

Table 98 – Value format for the minimum and maximum version commands

Field Type Description

Version Array of 32-bit
integers

An array of integer elements indicating the version number. This is considered a
hierarchical version number (e.g., “1.0.20.3”), where each successive integer
represents a more minor element of the version number.

The following procedure is used to determine if a version is within the indicated range.

If a Minimum Version is given, then for each element of the Version array, beginning

with the first (most major element):

1. If this element of the recipient‘s actual version is greater than the corresponding

element of the minimum version, then the recipient‘s version meets the

requirement and the procedure is complete.

2. If this element of the recipient‘s actual version number is less than the

corresponding element of the minimum version, then the recipient‘s version does

not meet the requirement. In this case, the procedure is complete and the recipient

MUST NOT install the files in this package or follow any of the remaining

commands.

3. Otherwise (the values are equal),

a. If this is the last element in the array, then the recipient‘s version meets

the requirement and the procedure is complete.

b. Otherwise (more elements remain), the procedure SHOULD continue at

step 1 using the next element of the array.

If a Maximum Version is given, then for each element of the Version array, beginning

with the first (most major element):

1. If this element of the recipient‘s actual version is less than the corresponding

element of the maximum version, then the recipient‘s version meets the

requirement and the procedure is complete.

2. If this element of the recipient‘s actual version number is greater than the

corresponding element of the maximum version, then the recipient‘s version does

not meet the requirement. In this case, the procedure is complete and the recipient

MUST NOT install the files in this package or follow any of the remaining

commands.

3. Otherwise (the values are equal),

a. If this is the last element in the array, then the recipient‘s version meets

the requirement and the procedure is complete.

b. Otherwise (more elements remain), the procedure SHOULD continue at

step 1 using the next element of the array.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 144 of 190

E.4.11 Role Command

The role command is used to indicate the target application or purpose of the package.

This is intended to indicate any side effects or post-processing that might be required for

a particular package.

The role commands include information in the Value portion of the command. The

format of this information is defined in Table 99.

Table 99 – Value format for the role command

Field Type Description

Role 32-bit integer An enumeration indicating the target application or purpose of the package. The
following values are defined:

1 = Software upgrade

2 = Software recovery

3 = Web content

4 = Vendor configuration

5 = Tone file (see [25] Appendix B)

6 = Ringer file (see [25] Appendix B)

Values with 0xFF as their most significant octet are to be interpreted as a
vendor-specific Role. In this case, the subsequent three octets contain the OUI
(organizationally unique identifier) identifying the vendor as defined in [10].
When this value is used, the vendor MAY define subsequent additional
arguments to be included in this command in order to specifically identify the
role. Any additional arguments are to be interpreted in a vendor-specific
manner.

All other values are reserved.

E.4.12 Minimum Storage Commands

The minimum storage commands include Minimum Volatile Storage Size and Minimum

Non-Volatile Storage Size.

The minimum storage commands indicate the minimum requirement of the recipient

device to be able to install the files contained in the package. If present, each command

indicates the minimum requirement for the type of storage indicated by the command

name.

If the recipient device does not meet a specified minimum requirement, the recipient

MUST NOT install any of the files in the package or continue processing commands.

The minimum storage commands include information in the Value portion of the

command. The format of this information is defined in Table 100.

Table 100 – Value format for the minimum storage commands

Field Type Description

Storage Size 32-bit Integer The minimum required storage in bytes of the type indicated by the command.

E.4.13 Required Attributes Command

The Required Attributes command is used to specify additional attributes of the recipient

device that are required in order for the package to be considered valid for installation.

One or more Required Attributes commands MAY be included in a single package, each

indicating a different class of attributes required.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 145 of 190

The Required Attribute command includes information in the Value portion of the

command. The format of this information is defined in Table 101.

Table 101 – Value format for the required attributes command

Field Type Description

Defining Entity 32-bit Integer Identifier indicating the definer of the Class and Attribute values used in this
command. The following values are defined:

A value of 0 (zero) indicates standard Class and Attribute definitions. Standard
definitions are those defined by this version or future versions of this
specification.

Values with 0xFF as their most significant octet indicate vendor-specific Class
and Attribute definitions. In this case, the subsequent three octets contain the
OUI (organizationally unique identifier) identifying the vendor as defined in [10].

If a recipient processes a Required Attributes command with a defining entity
value that it does not recognize, it SHOULD ignore the command and continue
processing subsequent commands.

Class 32-bit Integer An enumeration indicating the criterion for which the recipient is to be compared
to determine whether or not this package is appropriate for that device. For a
given criterion, the attribute array field indicates the particular allowed values
associated with that criterion.

In this version of the specification, no standard class values are defined. For
vendor-specific defining entities, the interpretation of class values is vendor-
specific.

If a recipient processes a Required Attributes command with a class value that it
does not recognize, it SHOULD ignore the command and continue processing
subsequent commands.

Attribute Array Array of 32-bit
Integer

A variable-length array attribute, where each attribute is an enumeration of a
particular allowed value for the particular class.

If actual value associated with the recipient device matches any of the values
listed in this array, then the recipient meets the specified requirement.
Otherwise, the recipient does not meet the requirement and the package MUST
NOT be installed.

In this version of the specification, no standard attribute values are defined. For
vendor-specific defining entities, the interpretation of attribute values is vendor-
specific.

E.5 Signatures

The signature section immediately follows the command list section of the package file.

The signature section consists of a digital signature block using the PKCS #7 signature

syntax [16].

In particular, the signature block includes exactly one PKCS #7 SignedData Object,

which contains zero or more signatures with the following constraints:

 The signatures are ―external signatures,‖ meaning that the signed message is not

encapsulated within the SignedData Object. Instead, the signed message data consists

of the octet string formed by the header and the command list components of the

package.

 The contentType element of the contentInfo MUST indicate type ―data.‖

 The content element of the contentInfo MUST be empty, since this is an external

signature and the message data resides outside the signature itself.

 The digestAlgorithm used for each signature MUST be of type SHA-1.

 The digestEncryptionAlgorithm used for each signature MUST be of type RSA.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 146 of 190

 The Tag value indicating the Identifier associated with the overall SignedData Object

MUST be less than or equal to 30, resulting in a single-octet encoding of the

Identifier.

 If there are no signatures in the signature block, there would be no extended

certificates or certificate revocation lists, the SignerInfo set would be empty, and the

digestAlgorithms set MAY be empty. All the other fields in SignedData MUST be

present as normal. Note that the content of an empty signature block is independent

of the content of the package and thus can be pre-computed as a fixed sequence of

bytes.

If the signature block contains more than one signature, at least one of the signatures

MUST be successfully validated for the recipient to consider the signed package as

trusted.

If one or more signatures are expected by the package recipient, the recipient MUST

validate the signature or signatures prior to processing the commands contained within

the command list. If none of the included signatures are validated, the recipient MUST

NOT process any of the commands in the command list or install any of the files

contained in the package.

If the recipient implementation is such that command list validation and processing might

be done without having loaded the entire package file from its source, the recipient MAY

assume that the combined length of the header, command list, and signature block is no

greater than 150 kilobytes.

Note that although the signed message data includes only the package header and

command list, the signature assures the integrity of the entire package because all

commands that refer to payload files include a hash of the file contents.

Note also that additional signatures can be added to an existing signed package file

without modifying any part of the file other than the signature block itself. The package

format is structured such that the other content (header, command list, and payload) of

the package file need not change if the length of the signature block changes.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 147 of 190

Annex F. Device-Gateway
Association

F.1 Introduction

The CPE WAN Management Protocol can be used to remotely manage CPE Devices that

are connected via a LAN through a Gateway. When an ACS manages both a Device and

the Gateway through which the Device is connected, it can be useful for the ACS to be

able to determine the identity of that particular Gateway.

The procedures defined in this Annex allow an ACS to determine the identity of the

Gateway through which a given Device is connected.

As an example of when this capability might be needed, an ACS establishing QoS for a

particular service might need to provision both the Device as well as the Gateway

through which that Device is connected. To do the latter, the ACS would need to

determine the identity of that particular Gateway.

The specific scenario that the defined mechanism is intended to accommodate is where

both the Gateway and Device are managed via the CPE WAN Management Protocol, and

both are managed by the same ACS (or by distinct ACSs that are appropriately coupled).

Where a Device and Gateway are managed by independent ACSs, it is assumed that there

is no requirement for either ACS to be made aware of the Device-Gateway association.

The defined mechanism relies on the Device‘s use of DHCP [20] / [35]. It is expected

that the vast majority of remotely manageable Devices will use DHCP, though not

necessarily all such Devices. While the mechanism defined here for Device-Gateway

association requires the use of DHCP, a Device using this mechanism need not use

DHCP for address allocation. This mechanism makes no assumptions about the address

allocated to the Device. That is, the Device might have a private or public IP address.

F.1.1 Terminology

The following terminology is used in this Annex.

Device CPE connected via local area network through a Gateway, bridge, or

router.

Device

Identity

A three-tuple that uniquely identifies a Device, which includes the

manufacturer OUI, serial number, and (optionally) product class.

Gateway Internet Gateway Device.

Gateway

Identity

A three-tuple that uniquely identifies a Gateway, which includes the

manufacturer OUI, serial number, and (optionally) product class.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 148 of 190

F.2 Procedures

The procedures for Device-Gateway association are summarized as follows:

 A Device following this Annex will pass its Device Identity to the Gateway via a

vendor-specific DHCP option. When the Gateway receives this information, it

populates a table containing identity information for each Device on its LAN. This

information is made available to the ACS via the ManageableDevice table in the

Gateway‘s Data Model, defined in [24] and [32].

 In the DHCP responses, the Gateway provides the Device with its Gateway Identity,

which the Device makes available to the ACS via the GatewayInfo data Object

defined in [31] and [32]. The Device notifies the ACS of changes to the contents of

this Object. Thus a Device connecting to a previously unknown Gateway will result

in the ACS being notified of the Gateway Identity.

 To ensure the validity of this information, which is carried over an inherently insecure

DHCP exchange, the ACS validates the Gateway Identity provided by the Device by

crosschecking against the Device Identity provided by the Gateway.

F.2.1 Gateway Requirements

A Gateway conforming to this Annex MUST support the DeviceAssociation:1 profile as

defined in [24] and [32].

A Gateway conforming to this Annex MUST inspect all DHCPv4 or DHCPv6 requests

received on a LAN interface and determine if the requesting Device has included its

Device Identity in the request. A DHCP request is determined to include the Device

Identity if it contains a DHCPv4 V-I Vendor-Specific Information Option (option number

125, as defined in [22]) or DHCPv6 Vendor-Specific Information Option (option number

17, as defined in [35]) that includes the Device Identity information, as defined in Section

F.2.5. The DHCPv4 requests for which this requirement applies are DHCPDISCOVER,

DHCPREQUEST, and DHCPINFORM. The DHCPv6 requests for which this

requirement applies are SOLICIT, REQUEST, RENEW, and INFORMATION-

REQUEST.

If the DHCP request is determined to include the Device Identity, then the Gateway

MUST do the following:

 The Gateway MUST include its Gateway Identity in all subsequent DHCP

responses. The Gateway Identity is carried in the DHCPv4 V-I Vendor-Specific

Information Option (option number 125, as defined in [22]) or DHCPv6 Vendor-

Specific Information Option (option number 17, as defined in [35]), as defined in

Section F.2.5. The DHCPv4 responses for which this requirement applies are

DHCPOFFER and DHCPACK. The DHCPv6 responses for which this

requirement applies are ADVERTISE and REPLY.

 On successful completion of the DHCP exchange, if an entry with a matching

Device Identity is not currently listed in the ManageableDevice table, then the

Gateway MUST add a new entry in its ManageableDevice table (see [24] and

[32]) that includes the Device Identity for this Device.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 149 of 190

The Gateway MUST adhere to the following additional requirements:

 The Gateway MUST retain a Device‘s entry in the ManageableDevice table as

long as the Device remains actively connected to the Gateway‘s LAN.

 The Gateway MUST remove a Device‘s entry when either:

o The DHCP-supplied information becomes invalid, e.g. the DHCPv4 lease

expires or is released.

o The Gateway determines that the Device is no longer actively connected to

the Gateway‘s LAN using a locally defined means of connectivity detection.

 The Gateway MUST allow the ACS to request active notification on additions

or deletions to the ManageableDevice table. If the ACS has set the Notification

Attribute for the Parameter ManagementServer.ManageableDeviceNumberOf-

Entries to Active Notification, then the Gateway MUST notify it each time a

Device entry is added or removed using the Notification mechanism defined by

the CPE WAN Management Protocol. If Active Notification is enabled for this

Parameter, the Gateway MUST limit the frequency of Active Notification

resulting from changes to the number of entries in the ManageableDevice table

as specified by the value of the ManageableDeviceNotificationLimit Parameter

in the same Object.

F.2.2 Device Requirements

A Device conforming to this Annex MUST support the GatewayInfo:1 profile as defined

in [31] and [32].

A Device conforming to this Annex MUST do the following:

 In DHCP requests, the Device MUST include a DHCPv4 V-I Vendor-Specific

Information Option (option number 125, as defined in [22]) or DHCPv6 Vendor-

Specific Information Option (option number 17, as defined in [35]) that includes

its Device Identity information, as defined in Section F.2.5. The DHCPv4

requests for which this requirement applies are DHCPDISCOVER,

DHCPREQUEST, and DHCPINFORM. The DHCPv6 requests for which this

requirement applies are SOLICIT, REQUEST, RENEW, and INFORMATION-

REQUEST.

 If the DHCP response includes the Gateway Identity carried in the DHCPv4 V-I

Vendor-Specific Information DHCP Option (option number 125, as defined in

[22]) or DHCPv6 Vendor-Specific Information Option (option number 17, as

defined in [35]), as defined in Section F.2.5, the Device MUST record the

received value in the GatewayInfo data Object defined in [31] and [32]. All of the

following values MUST be recorded:

Device.GatewayInfo.ManufacturerOUI

Device.GatewayInfo.SerialNumber

Device.GatewayInfo.ProductClass

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 150 of 190

 The DHCPv4 responses for which this requirement applies are DHCPOFFER and

DHCPACK. The DHCPv6 response for which this requirement applies are

ADVERTISE and REPLY.

 If any of the elements of the Gateway Identity are not present in the V-I Vendor-

Specific Information DHCP Option, the Device MUST record an empty string for

each such item (replacing the previous value, if any).

 For all of the Parameters in the Device.GatewayInfo Object, the Device MUST by

default set the Notification attribute as defined in Annex A to Active Notification.

The Device MUST apply this default whenever the URL of the ACS is set or

subsequently modified. Whenever Active Notification is enabled for these

Parameters, the device MUST actively notify the ACS as defined in Annex A if

the value of any of these Parameters changes.

 If the DHCP-discovered information becomes invalid, e.g. the DHCPv4 lease is

released or expires without renewal, all entries in the GatewayInfo Object MUST

be discarded (set to the empty string).

F.2.3 ACS Requirements

Whenever a Device is associated with a Gateway, the Device will notify the ACS,

providing the new Gateway Identity information. When this occurs, the ACS SHOULD

do the following:

 If the ACS has previously associated the Device with a Gateway, the ACS

SHOULD examine the Gateway Identity from the Device (from the GatewayInfo

Object) and compare it to the Gateway Identity of the prior association. If the

association is unchanged, the ACS need not take any further action.

 If the Gateway Identity from the Device is different from the identity of the

Gateway previously associated with the Device, or if there was no previous

Gateway association for the Device, then the ACS SHOULD first validate the

information provided by the Device, and if validated, update the Device-Gateway

association to indicate the new Gateway Identity.

The ACS SHOULD consider the association valid only if all elements of the

Device Identity match the Device Identity elements in at least one entry in the

ManageableDevice table of the indicated Gateway (see [24] and [32]). The ACS

would determine the current contents of the ManageableDevice table either by

contacting the Gateway using a Connection Request to read the table, or receiving

Active Notifications on additions and deletions to this table (by the ACS having

previously requested Active Notifications on the ManageableDeviceNumberOf-

Entries Parameter).

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 151 of 190

F.2.4 Device-Gateway Association Flows

Note – The examples in this Section are specific to DHCPv4. The flows for DHCPv6

would display the same logic but with DHCPv4 messages replaced with the

corresponding DHCPv6 messages.

Figure 10 shows the flow associated with the procedures for Device-Gateway association,

where the Device uses a DHCP Discover message to initiate the association as part of

DHCP address allocation.

Gateway

TR-069 Inform (device + gateway identity)

ACSDevice

DHCP Discover (device identity)

DHCP Offer (gateway identity)

DHCP Ack (gateway identity)

TR-069 Inform Response

Add device record to

ManageableDevice table

DHCP Request (device identity)

Optional

Cross-

Check

Get ManageableDevice table (TR-069)

ManageableDevice table (TR-069)

Establish TR-069 Session

Figure 10 – Device-Gateway Association using DHCP Discover

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 152 of 190

The use of DHCP does not dictate that the device use DHCP for address allocation. If the

Device obtains IP addressing Parameters using other means, the device would use a

DHCP Inform for the exchange of information with the Gateway. The flow for this case

is show in Figure 11.

Gateway

TR-069 Inform (device + gateway identity)

ACSDevice

DHCP Inform (device identity)

DHCP Ack (gateway identity)

TR-069 Inform Response

Optional

Cross-

Check

Get ManageableDevice table (TR-069)

ManageableDevice table (TR-069)

Add device record to

ManageableDevice table

Establish TR-069 Session

Figure 11 – Device-Gateway Association Using DHCP Inform

F.2.5 DHCP Vendor Options

The Device Identity and Gateway Identity information exchanged via DHCP MUST be

contained within the DHCPv4 V-I Vendor-Specific Information Option (option number

125, as defined in [22]) or DHCPv6 Vendor-Specific Information Option (option number

17, as defined in [35]). These DHCP options are defined to allow vendor-specific

information from multiple distinct organizations, where the specific organization is

explicitly identified via an IANA Enterprise Number.

For DHCP messages that contain Device Identity or Gateway Identity information, the

Vendor-Specific Information DHCP Option MUST include an element identified with the

IANA Enterprise Number for the Broadband Forum that follows the format defined

below. The IANA Enterprise Number for the Broadband Forum is 3561 in decimal (the

―ADSL Forum‖ entry in the IANA Private Enterprise Numbers registry [18]).

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 153 of 190

Each vendor-specific element within this DHCP Option is defined to contain a series of

one or more Encapsulated Vendor-Specific Option-Data fields, encoded as specified in

[22] / [35]. Each such field includes a Sub-Option Code, a Sub-Option Length, and Sub-

Option Data. The values for these elements defined in this Annex are listed in Table 102.

Table 102 – Encapsulated Vendor-Specific Option-Data fields

Encapsulated Option Sub-Option
Code

Source
Entity

Source Parameter
25

DeviceManufacturerOUI 1 Device Device.DeviceInfo.ManufacturerOUI
26

DeviceSerialNumber 2 Device Device.DeviceInfo.SerialNumber
26

DeviceProductClass 3 Device Device.DeviceInfo.ProductClass
26

GatewayManufacturerOUI 4 Gateway DeviceInfo.ManufacturerOUI
27

GatewaySerialNumber 5 Gateway DeviceInfo.SerialNumber
27

GatewayProductClass 6 Gateway DeviceInfo.ProductClass
27

In encoding the source Parameter value in the corresponding Sub-Option Data element,

the resulting string MUST NOT be null terminated.

For a DHCP request from the Device that contains the Device Identity, the DHCP Option

MUST contain the following Encapsulated Vendor-Specific Option-Data fields:

 DeviceManufacturerOUI

 DeviceSerialNumber

 DeviceProductClass (this MAY be left out if the corresponding source Parameter

is not present)

For a DHCP response from the Gateway that contains the Gateway Identity, the DHCP

Option MUST contain the following Encapsulated Vendor-Specific Option-Data fields:

 GatewayManufacturerOUI

 GatewaySerialNumber

 GatewayProductClass (this MAY be left out if the corresponding source

Parameter is not present)

F.3 Security Considerations

While this Annex was designed to provide a high degree of security, some known

vulnerabilities remain:

 While the mechanism to allow the ACS to validate the identity information

provided to it by the Device is optional, it is strongly encouraged that this

validation be implemented. The use of this validation is the only means within

the context of this Annex to overcome the lack of an inherent integrity checking

mechanism in the DHCP exchange between the Device and Gateway. By using

25 The value of the corresponding Sub-Option Data element is obtained from the specified Parameter value.
26 As defined in [31] and [32].
27 As defined in [24] and [32].

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 154 of 190

this validation, attempts to tamper with the identity information of either the

Device or Gateway can be detected by the ACS.

 The condition for validation of the Device-Gateway association is that the Device

can communicate over the LAN to the Gateway and that the Device and Gateway

can authenticate themselves via the CPE WAN Management Protocol to the ACS.

The possibility exists that a valid Device not present on a Gateway‘s LAN could

falsify its association with a Gateway by providing a communication path

between the Device and the Gateway‘s LAN. For example, a Device could

establish a communication path to a server, which in turn communicates with a

Trojan horse application on the target LAN, which acts as a proxy for the Device.

Providing such a path could make the Device indistinguishable from one

physically connected to the LAN. To mitigate this possibility, the Gateway can

optionally provide mechanisms to allow the user to monitor and regulate what

devices are present on the LAN.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 155 of 190

Annex G. Connection Request via
NAT Gateway

Note – This mechanism only works with ―Classic STUN‖ as defined in RFC 3489 [21], which has been

made obsolete by the introduction of RFC 5389 [33]. This mechanism was not designed to work with

STUN as defined in RFC 5389. IPv6 deployments will either not use NAT or will use it in different

ways. A future version of this document will consider IPv6 deployments.

G.1 Introduction

The CPE WAN Management Protocol can be used to remotely manage CPE Devices that

are connected via a LAN through a Gateway. When an ACS manages a Device

connected via a NAT Gateway (where the Device has been allocated a private IP

address), the CPE WAN Management Protocol can still be used for management of the

Device, but with the limitation that the Connection Request mechanism defined in

Section 3.2.1.2 that allows the ACS to initiate a Session cannot be used.

The procedures defined in this Annex allow an ACS to initiate a Session with a device

that is operating behind a NAT Gateway. This provides the equivalent functionality of

the Connection Request defined in Section 3.2.1.2, but makes use of a different

mechanism to accommodate this scenario.

The mechanism defined in this Annex does not assume that the Gateway through which

the Device is connected supports the CPE WAN Management Protocol. This mechanism

requires support only in the Device and the associated ACS.

G.2 Procedures

To accommodate the ability for an ACS to issue the equivalent of a Connection Request

to CPE allocated a private address through a NAT Gateway that might not be CPE WAN

Management Protocol capable, the following is required:

 The CPE MUST be able to discover that its connection to the ACS is via a NAT

Gateway that has allocated a private IP address to the CPE.

 The CPE MUST be able to maintain an open NAT binding through which the

ACS can send unsolicited packets.

 The CPE MUST be able to determine the public IP address and port associated

with the open NAT binding, and communicate this information to the ACS.

To accomplish the above items, this Annex defines a particular use of the STUN

mechanism, defined in RFC 3489 [21].

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 156 of 190

The use of STUN for this purpose requires that a new UDP-based Connection Request

mechanism be defined to augment the existing TCP-based Connection Request

mechanism defined in Section 3.2.1.2.

The procedures for making use of STUN to allow the use of UDP Connection Requests

to a CPE are summarized as follows:

 The ACS enables the use of STUN in the CPE (if it is not already enabled by

factory default) and designates the STUN server for the CPE to use.

 The CPE uses STUN to determine whether or not the CPE is behind a NAT

Gateway with a private allocated address.

 If the CPE is behind a NAT Gateway with a private allocated address, the CPE

uses the procedures defined in STUN to discover the binding timeout.

 The CPE sends periodic STUN Binding Requests at a sufficient frequency to keep

alive the NAT binding on which it listens for UDP Connection Requests.

 When the CPE determines the public IP address and port for the NAT binding on

which it is listening for UDP Connection Requests, and whenever it subsequently

changes, the CPE communicates this information to the ACS. Two means are

provided by which the ACS, at its discretion, can obtain this information—either

from information provided in the STUN Binding Request messages themselves,

or via Notification on changes to the UDPConnectionRequestAddress Parameter,

which the CPE will update to include the public Connection Request address and

port.

 Whenever the ACS wishes to establish a connection to the CPE, it can send a

UDP Connection Request to the CPE. To accommodate the broadest class of

NAT Gateways, this will be sent from the same source address and port as the

STUN server.

G.2.1 CPE Requirements

A CPE conforming to this Annex MUST support the UDPConnReq :1 profile as defined

in [24] and [32] if the CPE is an Internet Gateway Device, or as defined in [31] and [32]

if the CPE is any other type of Device.

Whenever the STUNEnable Parameter in the ManagementServer Object is set to true,

CPE following the requirements of this Annex MUST make use of the procedures

defined in STUN [21] to determine whether or not address and/or port translation is

taking place between the CPE and the STUN server. If address and/or port translation is

taking place, the CPE MUST:

 Determine the public IP address and port for the NAT binding on which it is

listening for UDP Connection Request messages.

 Discover the NAT binding timeout, and send STUN Binding Request messages at

a rate necessary to keep alive this binding.

 Indicate via STUN optional attributes on which binding it is listening for UDP

Connection Requests, and if the binding has recently changed. Also, update the

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 157 of 190

UDPConnectionRequestAddress Parameter to indicate the current public IP

address and port associated with the binding.

 Listen for UDP Connection Request messages, and act on these messages when

they arrive.

The details of each of these functions are defined in the following Sections.

Note – While the CPE requirements defined here certainly apply to a Device connected via LAN to a

Gateway, the same procedures can be followed by a Gateway, which might be operating behind a

network-based NAT gateway. Thus the requirements are defined generically for CPE, which might be

either a Device or Gateway.

G.2.1.1 Binding Discovery

When STUN is enabled via the STUNEnable Parameter in the ManagementServer

Object, the CPE MUST send Binding Request messages to the STUN server designated

in the STUNServerAddress and STUNServerPort Parameters, as defined in [21]. If no

STUNServerAddress is given, the address of the ACS determined from the host portion

of the ACS URL MUST be used as the STUN server address.

For the purpose of binding discovery, Binding Requests MUST be sent from the source

address and port on which the CPE will be listening for UDP Connection Requests if it

determines that address and/or port translation is in use (Binding Requests for binding

timeout discovery, will be sent from a different port as described in Section G.2.1.2).

The basic Binding Request message allows the CPE to determine if address and/or port

translation is in use between the CPE and the STUN server. This is determined by

comparing the source address and port on which the request was sent to the MAPPED-

ADDRESS attribute received in a response from the STUN server. If either the address

or port is different, then translation is in use.

If it is determined that address and/or port translation is in use, the CPE MUST record the

value of the MAPPED-ADDRESS attribute in the most recently received Binding

Response. This represents the public IP address and port to which UDP Connection

Requests would be sent.

Each time the CPE subsequently sends a Binding Request for the purpose of maintaining

the binding (see G.2.1.2), the CPE MUST again determine if address and/or port

translation is in use, and if so, obtain the public IP address and port information from the

MAPPED-ADDRESS attribute in a successful Binding Response. The actions the CPE

will take when this information changes are defined in Section G.2.1.3.

If the CPE has been provisioned with a STUNUsername and STUNPassword in the

ManagementServer Object, then if the CPE receives a Binding Error Response from the

STUN server with a fault code of 401 (Unauthorized), then the CPE MUST resend the

Binding Request with the USERNAME and MESSAGE-INTEGRITY attributes as

defined in [21]. Whenever a Binding Request is sent that includes the MESSAGE-

INTEGRITY attribute, the CPE MUST discard a corresponding Binding Response if the

MESSAGE-INTEGRITY attribute in the Binding Response is either invalid, as defined

in [21], or is not present.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 158 of 190

If the local IP address allocated to the CPE changes, the CPE MUST re-discover the

binding using the procedures described above. The minimum limit on the Binding

Request period defined by STUNMinimumKeepAlivePeriod does not apply in this case.

Other than Binding Request messages sent explicitly in response to a Binding Error

Response from the STUN server with a fault code of 401 (Unauthorized), the CPE

MUST NOT include the MESSAGE-INTEGRITY attributes in any Binding Request.
28

The STUN client in the CPE need not support the CHANGE-REQUEST attribute of

STUN Binding Requests, nor need it understand the CHANGED-ADDRESS, SOURCE-

ADDRESS, and REFLECTED-FROM attributes present in a Binding Response.
29

The STUN client in the CPE need not support the STUN messages for exchanging a

Shared Secret. None of these messages are used in the application defined in this Annex.

G.2.1.2 Maintaining the Binding

To keep alive the NAT binding, the CPE MUST periodically retransmit Binding Request

messages from the source address and port on which the CPE will be listening for UDP

Connection Requests.

The CPE MUST NOT send these Binding Requests more frequently than is specified by

the STUNMinimumKeepAlivePeriod Parameter in the ManagementServer Object.

The CPE MUST send these Binding Requests at least as frequently as is specified by the

STUNMaximumKeepAlivePeriod Parameter in the ManagementServer Object, if a value

is specified.

If the value of STUNMinimumKeepAlivePeriod and STUNMaximumKeepAlivePeriod

are not equal, then the CPE MUST actively discover the longest keep-alive period for

which the NAT binding is maintained. To do this, the CPE MUST use the procedures

described generally in [21] to learn the binding timeout. Specifically, the CPE MUST be

able to test whether the binding has timed out by sending Binding Requests from a

secondary source port distinct from the primary source port, and use the RESPONSE-

ADDRESS attribute in the Binding Request to indicate that the STUN Binding Response

be sent to the primary source port (the port on which the CPE is listening for UDP

Connection Request messages).

The specific procedures by which the CPE uses Binding Requests from the secondary

source port to determine the binding timeout is left to the discretion of the CPE vendor.

In general, the procedure would consist of two phases: a discovery phase, and a

monitoring phase. During the discovery phase, the CPE is attempting to learn the value

of the binding timeout, and would test different timeout values to determine the actual

timeout value (for example, using a binary search). During the monitoring phase, the

CPE would periodically test the binding prior to refreshing it to determine if the binding

28 Because the STUN specification requires the STUN server to use message integrity in its response if message

integrity was used in the request, the CPE cannot use message integrity for Binding Requests on its own, but only

when so directed by the STUN server. This is to ensure that the server has total discretion as to when and whether

message integrity is to be used.
29 These attributes are primarily intended to allow discovery of the type of NAT in use, which is not required for this

Annex.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 159 of 190

is still in place. If not, the CPE could then revert to the discovery phase to determine a

new value for the binding.

The minimum limit on the Binding Request period defined by STUNMinimumKeep-

AlivePeriod does not apply to Binding Requests sent from a secondary source port.

G.2.1.3 Communication of the Binding Information to the ACS

Two means are defined by which the ACS can be informed of the binding information.

The CPE MUST support both methods.
30

 The first method involves the use of optional

STUN attributes sent in the Binding Requests. The second method involves the CPE

updating the value of the UDPConnectionRequestAddress Parameter as the binding

information changes.

Table 103 specifies a set of STUN attributes are defined for this application. These use

Attribute Type values that are greater than 0x7FFF, which the STUN specification

defines as ―optional.‖ STUN servers that do not understand optional attributes, are

required to ignore them.

Table 103 – Optional STUN attributes used in Binding Request messages

Attribute Type Name Description

0xC001 CONNECTION-REQUEST-BINDING Indicates the binding on which the CPE is listening for
UDP Connection Requests.

The content of the Value element of this attribute MUST
be the following byte string:

0x64 0x73 0x6C 0x66

0x6F 0x72 0x75 0x6D

0x2E 0x6F 0x72 0x67

0x2F 0x54 0x52 0x2D

0x31 0x31 0x31 0x20

This corresponds to the following text string:
31

“dslforum.org/TR-111 ”

A space character is the last character of this string so
that its length is a multiple of four characters.

The Length element of this attribute MUST equal:

0x0014 (20 decimal)

0xC002 BINDING-CHANGE Indicates that the binding has changed.

This attribute contains no value. Its Length element
MUST be equal to zero.

This attribute MUST only be used where the
CONNECTION-REQUEST-BINDING is also included.

A CPE MUST include the CONNECTION-REQUEST-BINDING attribute in every

Binding Request message whose source address and port are the address and port on

which it is listening for UDP Connection Request messages. In all other Binding Request

messages, the CPE MUST NOT include this attribute.

30 Defining two methods allows flexibility by the ACS in making the tradeoffs between these two approaches.

Specifically, the STUN-based approach may require a tighter coupling between the ACS itself and the associated

STUN server, while the Notification-based approach may result in greater communication overhead.
31 This text string is used to allow an observer, including the NAT Gateway itself, to identify that these STUN

messages represent UDP Connection Request bindings associated with this specification. A Gateway might use

this knowledge to optimize the associated performance. For example, a Gateway could lengthen the UDP timeout

associated with this binding to reduce the frequency of binding updates.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 160 of 190

In every Binding Request message sent in which the CPE includes the CONNECTION-

REQUEST-BINDING attribute, if the value of the STUNUsername Parameter in the

ManagementServer Object is non-empty, the CPE MUST include the USERNAME

attribute set to the value of the STUNUsername Parameter, if necessary padded with

trailing spaces to make its length a multiple of 4 bytes (as required by the STUN

protocol).

Whenever the CPE detects a change to the NAT binding (as well as the first time the CPE

determines the binding), it MUST immediately send a Binding Request message from the

primary source port (the port on which the CPE is listening for UDP Connection Request

messages) that includes the BINDING-CHANGE attribute. This Binding Request MUST

NOT include the RESPONSE-ADDRESS or CHANGE-REQUEST attributes. In all

other Binding Request messages, the CPE MUST NOT include the BINDING-CHANGE

attribute. The minimum limit on Binding Request period defined by STUNMinimum-

KeepAlivePeriod does not apply to Binding Requests that include the BINDING-

CHANGE attribute.

For Binding Requests that include the BINDING-CHANGE attribute, the CPE MUST

follow the retransmission procedures define in [21] to attempt to ensure the successful

reception. If, following these retransmission procedures, the CPE determines that the

Binding Request has failed, it MUST NOT make further attempts to send Binding

Requests that include the BINDING-CHANGE attribute (until the binding subsequently

changes again).

When the CPE determines that address and/or port mapping is in use, and whenever the

CPE determines that the binding has changed (as well as the first time the CPE

determines the binding), the CPE MUST update the value of the

UDPConnectionRequestAddress Parameter in the ManagementServer Object.

Specifically:

 The Host portion of the UDPConnectionRequestAddress MUST be set to the

current public IP address for the binding associated with the UDP Connection

Request as determined from the most recent binding information.

 The Port portion of the UDPConnectionRequestAddress MUST be set to the

current public port for the binding associated with the UDP Connection Request

as determined from the most recent binding information.

When the CPE determines that address and/or port mapping is in use, the CPE MUST

also set the NATDetected Parameter in the ManagementServer Object to true.

If the ACS has set the Notification attribute on the UDPConnectionRequestAddress

Parameter to Active Notification, then whenever the binding information has changed,

the CPE MUST establish a connection to the ACS and include the

UDPConnectionRequestAddress in the Inform message, as defined in Annex A.

When the UDPConnectionRequestAddress is changed, if the time since the most recent

Notification on a change to the UDPConnectionRequestAddress is less than the value of

UDPConnectionRequestAddressNotificationLimit, the Notification MUST be delayed

until the specified minimum time period is met.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 161 of 190

Note – In addition to the specified minimum notification period, the CPE MAY use its discretion to

delay notifying the ACS of updated binding information in order to avoid excessive notifications. Such

a delay would only be used if the CPE is confident that the binding is likely to change again within a

brief period. For example, during active discovery of the binding timeout it is reasonable to expect

frequent binding changes. Similarly, a CPE might be able to detect that a security attack is causing

frequent binding changes, and limit the number of notifications until the attack ceases.

If the CPE determines that neither address nor port mapping are in use, then the CPE

MUST indicate this to the ACS by setting the NATDetected Parameter to false, and

setting the UDPConnectionRequestAddress such that the Host and Port are the local IP

address and port on which the CPE is listening for UDP Connection Request messages.

G.2.1.4 UDP Connection Requests

A CPE conforming to this Annex MUST listen for UDP Connection Request messages

on the port that it has designated for this purpose. This MUST be true whether or not the

CPE has detected address or port translation in use, and whether or not the use of STUN

is enabled.

Note – a CPE MUST also continue to listen for TCP-based Connection Requests as defined in Section

3.2.1.2.

The format of the UDP Connection Request message is defined in Section G.2.2.3.

When the CPE receives a UDP Connection Request message, it MUST both authenticate

and validate the message.

A UDP Connection Request message is valid if and only if the following requirements

are met:

 It MUST NOT violate any requirements specified in [6] for an HTTP 1.1

request message.

 The Method given in the Request Line MUST be ―GET‖.

 The Timestamp given by the value of the ―ts‖ query string argument MUST be

strictly greater than the Timestamp value for the UDP Connection Request

message that had been most recently received, validated, and authenticated.

To allow the above comparison to be made, the CPE MUST maintain a

persistent record of Timestamp value of the most recent UDP Connection

Request that was successfully validated and authenticated (except across CPE

reboots). The Timestamp value for any UDP Connection Request message that

fails to be validated or authenticated MUST NOT be recorded. The CPE MAY

maintain a record of this most recent Timestamp across CPE reboots. If the

CPE does not maintain this value across reboots, then immediately following

the reboot the value zero MUST be used.

The CPE MAY place stricter requirements on the Timestamp than stated above.

The CPE MAY, for example, additionally verify that the Timestamp is within a

time window relative to its understanding of the current time. If a CPE chooses

to do this, it SHOULD avoid making the time window too narrow, in order to

allow for a reasonable margin of error in both the CPE and ACS.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 162 of 190

 The Message ID given by the value of the ―id‖ query string argument MUST be

distinct from that of the UDP Connection Request message that had been most

recently received, validated, and authenticated.

 The Username given by the value of the ―un‖ query string argument MUST

match the value of the Parameter Device.ManagementServer.Connection-

RequestUsername.

A UDP Connection Request message is authenticated if and only if the following

requirements are met:

 The Signature given by the value of the ―sig‖ query string argument MUST

match the value of the signature locally computed by the CPE following the

procedure specified in Section G.2.2.3 using the local value of the Parameter

Device.ManagementServer.ConnectionRequestPassword.

Whenever a CPE receives and successfully authenticates and validates a UDP

Connection Request, it MUST follow the same requirements as for a TCP-based

Connection Request that are defined in Section 3.2.1.2.

The CPE MUST ignore a UDP Connection Request that is not successfully authenticated

or validated.

The CPE MUST ignore the content of any non-empty Message Body that might be

present in the UDP Connection Request (this allows the possibility of the use of a non-

empty message body in a future version of this protocol).

Because STUN responses and UDP Connection Requests will be received on the same

UDP port, the CPE MUST appropriately distinguish STUN messages from UDP

Connection Requests using the content of the messages themselves. As the first byte of

all STUN messages defined in [21] is either 0 or 1, and the first byte of the UDP

Connection Request is always an ASCII encoded alphabetic letter, the CPE MAY use this

distinction to distinguish between these messages.

Port 7547 has been assigned by IANA for the CPE WAN Management Protocol (see

[17]), and the CPE MAY use this port for UDP Connection Requests.

G.2.2 ACS Requirements

An ACS following the requirements of this Annex MUST be associated with a STUN

server that follows the requirements defined in this Section.

G.2.2.1 STUN Server Requirements

The STUN server MUST conform to all of the requirements defined in [21], with the

following exceptions, which the STUN server MAY choose not to implement.

 The STUN server need not support the Shared Secret exchange mechanism

defined in [21]. If message integrity is used, the shared secrets MUST be

statically provisioned, and correspond to the STUNUsername and

STUNPassword Parameters in the ManagementServer Object in the CPE.

 The STUN server need not support a secondary source IP address or port for

sending Binding Responses (A2/P2). If it does not, the CHANGED-ADDRESS

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 163 of 190

attribute SHOULD be filled in with the primary address and port (A1/P1), and the

STUN server MAY ignore the CHANGE-REQUEST attribute if received in a

Binding Request.

The STUN server MAY require message integrity for any received Binding Requests of

its choosing by responding to the request with a Binding Error Response with fault code

401 (Unauthorized).

G.2.2.2 Determination of the Binding Information

The ACS can choose either of the two defined mechanisms to determine the current

binding information from a CPE.

G.2.2.2.1 STUN-based Approach

If the ACS chooses to use the attributes received by the STUN server, it SHOULD set a

non-empty STUNUsername and STUNPassword in the ManagementServer Object of

each CPE. The STUNUsername MUST be unique among all CPE managed by the

corresponding ACS to ensure that the CPE can be distinguished. The STUNPassword

SHOULD be unique among all CPE managed by the corresponding ACS, and SHOULD

follow the password strength guidelines specified in [21].

Whenever the STUN server receives a Binding Request that includes both the BINDING-

CHANGE and CONNECTION-REQUEST-BINDING attributes:

 The STUN server SHOULD respond with a Binding Error Response with fault

code 401 (Unauthorized) in order to force the CPE to retransmit the Binding

Request with message integrity included.

 When the STUN server receives the retransmitted request with message integrity,

it SHOULD authenticate the requester. This would likely involve communication

between the STUN server and ACS if they were not implemented as a single

entity.

 If the authentication fails, the STUN server MUST respond with a Binding

Request Error as defined in [21] and take no further action.

 If the authentication is successful, the STUN server SHOULD extract the source

IP address and port from the Binding Request message, and record these as the

new IP address and port to be used for UDP Connection Requests. Depending on

the implementation, this might involve the STUN server informing the ACS of

the IP address and port along with the corresponding STUNUsername, from

which the ACS would then record this information for the CPE corresponding to

that STUNUsername.

 The STUN server SHOULD perform the above only once for a given Transaction

ID in the Binding Request. Redundant copies of the Binding Request with the

same Transaction ID SHOULD be ignored.

Using this approach, the STUN server MAY choose not to require message integrity or

authenticate any Binding Requests other than those for which it follows the above

procedures to determine the binding information.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 164 of 190

The ACS MAY determine the current binding at any time even if no change was notified

by following the above procedure on any received Binding Request for which the

CONNECTION-REQUEST-BINDING attribute is present. The required presence of the

USERNAME attribute in these Binding Requests allows the ACS to tentatively

determine the CPE‘s identity prior to subsequent authentication. This allows an ACS to

periodically verify the binding information to ensure that it is up-to-date in case explicit

indications of a binding change had failed to reach the ACS.

If the ACS determines that the CPE is no longer behind a NAT that is doing address or

port mapping, the ACS MAY use TCP-based Connection Requests as defined in Section

3.2.1.2.

G.2.2.2.2 Notification-based Approach

If the ACS chooses to use Active Notification on the UDPConnectionRequestAddress

Parameter, it SHOULD do the following:

 Set the Notification attribute for the UDPConnectionRequestAddress Parameter to

Active Notification.

 Record changes to the UDPConnectionRequestAddress Parameter whenever this

Parameter is included in the Inform message, and use the most recently recorded

value to determine the destination of UDP Connection Request messages.

Specifically, the destination IP address for UDP Connection Request messages is

determined from the ―host‖ portion of this Parameter, and the destination port is

determined from the ―port‖ portion of this Parameter. If the host is given as a

domain name, the ACS MUST use DNS to determine the associated IP address.

If the port is not explicitly given in the UDPConnectionRequestAddress

Parameter, port 80 MUST be used as the default value.

 Observe the value of the NATDetected Parameter (either by reading it when

UDPConnectionRequestAddress changes, or by enabling Active Notification on

this Parameter as well). Whenever this Parameter is false, the ACS MAY use

TCP-based Connection Requests as defined in Section 3.2.1.2.

Using this approach, the ACS MAY choose not to require message integrity or

authenticate any STUN Binding Requests, since these requests are not used to convey

information to the ACS. In this case, the ACS need not set a STUNUsername or

STUNPassword in the CPE.

G.2.2.3 UDP Connection Requests

The ACS MUST send UDP Connection Request messages from the same source IP

address and port as the STUN server.

A UDP Connection Request message MUST be transmitted within a single UDP packet

sent to the IP address and port determined by the ACS as described in Section G.2.2.2.

The ACS SHOULD send multiple copies of the same UDP Connection Request message

in order to reduce the likelihood that the message is lost due to packet loss. When an

ACS sends multiple copies of the same UDP Connection Request, the content of the

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 165 of 190

message (including the message ID, timestamp, and cnonce, as defined below) MUST be

identical for each successive copy.

There is no response message associated with a UDP Connection Request message.

The format of the UDP Connection Request message is derived from the format of an

HTTP 1.1 [6] GET message, though the HTTP 1.1 protocol itself is not used.

Specifically, the UDP Connection Request message MUST conform to the following

requirements:

 It MUST be a valid HTTP 1.1 GET message as defined in [6].

 It MUST contain no Message Body.

 If a Content-Length header is present, its value MUST be zero.

 The Method given in the Request Line MUST be ―GET‖.

 The Request-URI given in the Request Line MUST be an Absolute-URI

according to the rules defined in [12]. The URI MUST be formed as follows:

o The Scheme portion of the URI MUST be ―http‖ or ―HTTP‖.

o The Authority portion of the URI MUST be as specified in [12]. The ACS

MAY set this to the value of Device.ManagementServer.UDPConnection-

RequestAddress, if it is known. Otherwise, the ACS MUST derive this

string from the actual destination IP address and port to which the UDP

Connection Request message will be sent. The ―port‖ portion of this

string MUST be present unless the destination port number is ―80‖.

o The Path portion of the URI MUST be empty.

o The Query portion of the URI MUST contain a query string encoded as

defined by the ―application/x-www-form-urlencoded‖ content type

defined in [23]. The query string MUST contain the following name-

value pairs:

Name Value

ts Timestamp. The number of seconds since the Unix epoch until the time the
message is created (the standard Unix timestamp).

id Message ID. An unsigned integer value that MUST be set to the same value for
all retransmitted copies of the same UDP Connection Request. The value MUST
change between successive distinct UDP Connection Requests.

un Username. The value of the Parameter Device.ManagementServer.Connection-
RequestUsername as read from the CPE.

cn Cnonce. A random string chosen by the ACS.

sig Signature. Formed from the 40-character hexadecimal representation (case
insensitive) of HMAC-SHA1 (Key, Text) [19], where:

 Key is the value of the Parameter Device.ManagementServer.Connection-
RequestPassword as read from the CPE.

 Text is a string formed by concatenating the following elements (in the order
listed, with no spaces between items):

 The value of the ts (Timestamp) element

 The value of the id (Message ID) element

 The value of the un (Username) element

 The value of the cn (Cnonce) element

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 166 of 190

Below is an example Request-URI:

http://10.1.1.1:8080?ts=1120673700&id=1234&un=CPE57689

&cn=XTGRWIPC6D3IPXS3&sig=3545F7B5820D76A3DF45A3A509DA8D8C38F13512

G.2.3 Message Flows

The following figures show example message flows associated with the procedures

defined in Sections G.2.1 and G.2.2 to support Connection Requests to devices behind a

NAT gateway.

In all of the examples, the address/port pairs use the notation (A, P), where A is the IP

address and P is the port. In the examples, the CPE uses (A1, P1) as its primary port (the

port on which the CPE is listening for UDP Connection Request messages) and (A1, P2)

is its secondary port (used for binding timeout discovery). When passing through a NAT

Gateway, these addresses are translated to (A1', P1') and (A1', P2'), respectively. In all of

the examples it is assumed that the STUN Server does not have a secondary address/port

and thus the CHANGED-ADDRESS attribute in the Binding Response (which need not

be used by the CPE) contains its primary address/port, (A3, P3).

Figure 12 shows the periodic binding discovery and binding maintenance flows where the

CPE sends the Binding Request from the primary source port and includes the

CONNECTION-REQUEST-BINDING and (if a Username had been set) USERNAME

attributes. In this example it is assumed that the STUN Server has not chosen to

authenticate the request.

(A3, P3)

ACS /

STUN Server

BINDING-REQUEST (CONNECTION-REQUEST-

BINDING : USERNAME)

BINDING-RESPONSE (MAPPED-ADDRESS=A1',P1' :

SOURCE-ADDRESS=A3,P3 : CHANGED-ADDRESS=A3,P3)

From (A1, P1)

To (A3, P3)

(A1, P1)

(A1, P2)

CPE

(A1', P1')

(A1', P2')

Gateway

From (A3, P3)

To (A1', P1')

Figure 12 – Binding discovery / maintenance from the primary source port

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 167 of 190

Figure 13 shows a Binding Request sent by the CPE from its secondary source port for

the purpose of discovering whether or not the primary binding has timed out in the NAT

gateway. In this case the Binding Request does not include the CONNECTION-

REQUEST-BINDING attribute since it is not sent from the primary source port. The last

leg of the exchange (shown in grey) will not occur if the primary binding has timed out.

(A3, P3)

ACS /

STUN Server

BINDING-REQUEST (RESPONSE-ADDRESS=A1', P1')

BINDING-RESPONSE (MAPPED-ADDRESS=A1',P2' :

SOURCE-ADDRESS=A3,P3 : CHANGED-ADDRESS=A3,P3 :

REFLECTED-FROM=A1',P2')

From (A1, P2)

To (A3, P3)

(A1, P1)

(A1, P2)

CPE

(A1', P1')

(A1', P2')

Gateway

From (A3, P3)

To (A1', P1')

Figure 13 – Binding Request from secondary source port for binding timeout discovery

Figure 14 shows a Binding Change notification where the STUN Server has chosen to

make use of the STUN-based approach (see Section G.2.2.2.1), and therefore

authenticates the Binding Request prior to storing the information associating the

Username with the current binding address and port.

(A3, P3)

ACS /

STUN Server

BINDING-REQUEST (CONNECTION-REQUEST-

BINDING : BINDING-CHANGE : USERNAME)

BINDING-ERROR-RESPONSE (401)

From (A1, P1)

To (A3, P3)

(A1, P1)

(A1, P2)

CPE

(A1', P1')

(A1', P2')

Gateway

From (A3, P3)

To (A1', P1')

BINDING-RESPONSE (MAPPED-ADDRESS=A1',P1' :

SOURCE-ADDRESS=A3,P3 : CHANGED-ADDRESS=A3,P3 :

MSG-INTEGRITY)

BINDING-REQUEST (CONNECTION-REQUEST-

BINDING : BINDING-CHANGE : USERNAME :

MSG-INTEGRITY)

From (A1, P1)

To (A3, P3)

From (A3, P3)

To (A1', P1')

Associate

Username

with

 (A1', P1')

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 168 of 190

Figure 14 – Binding change notification authenticated by the ACS

Figure 15 shows a Binding Change notification where the STUN Server has chosen to

make use of the Notification-based approach (see Section G.2.2.2.2), and therefore does

not need to authenticate the Binding Request since the ACS instead uses CPE WAN

Management Protocol Notification to update the binding information.

(A3, P3)

ACS /

STUN Server

BINDING-REQUEST (CONNECTION-REQUEST-

BINDING : BINDING-CHANGE : USERNAME)

BINDING-RESPONSE (MAPPED-ADDRESS=A1',P1' :

SOURCE-ADDRESS=A3,P3 : CHANGED-ADDRESS=A3,P3)

From (A1, P1)

To (A3, P3)

(A1, P1)

(A1, P2)

CPE

(A1', P1')

(A1', P2')

Gateway

From (A3, P3)

To (A1', P1')

Figure 15 – Binding change notification not authenticated by the ACS

Figure 16 shows a UDP Connection Request message sent to the CPE to initiate a CPE

WAN Management Protocol session. In this example, the STUN Server sends the

identical UDP Connection Request multiple times to improve the likelihood of successful

reception by the CPE.

(A3, P3)

ACS /

STUN Server

UDP Connection Request

UDP Connection Request

(A1, P1)

(A1, P2)

CPE

(A1', P1')

(A1', P2')

Gateway

From (A3, P3)

To (A1', P1')

From (A3, P3)

To (A1', P1')

Figure 16 – UDP Connection Request

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 169 of 190

G.3 Security Considerations

The following security considerations associated with the procedures defined in this

Annex are identified:

 The STUN specification describes several potential attacks using the STUN

mechanism. The reader is referred to Section 12 of RFC 3489 [21] for a detailed

description of these potential attacks and the associated risk.

 Because binding changes will result in actions required by the ACS—

authentication of a CPE, and subsequent database update, and potentially

establishment of a CPE WAN Management Protocol session over which to

receive an Inform—attacks that can cause frequent changes to the NAT binding

could result in an increased burden on the ACS. The ACS can set a minimum

limit on the rate of Notifications on binding changes if Active Notification is

used. However, there is a tradeoff between the maximum Notification rate and

the length of time for which the ACS might not be able to send Connection

Requests to the CPE due to out-of-date information.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 170 of 190

Annex H. Software Module
Management UUID
Usage

H.1 Overview

The Software Module Management mechanism uses a UUID (see RFC 4122 [34] for a

complete definition of UUID) to uniformly identify a Deployment Unit across CPE.

Since Deployment Units can be installed multiple times on a single CPE (e.g. multiple

versions of the same Deployment Unit or the same version of the Deployment Unit on

different Execution Environments), a Deployment Unit on a specific CPE is uniquely

identified by the combination of UUID, version, and Execution Environment that the

Deployment Unit is installed upon, but the UUID is still the uniform unique identifier of

that Deployment Unit (i.e. this means that the UUID will be the same independent of the

version of the Deployment Unit). A version 3 UUID is a method for generating UUIDs

from ―names‖ that are unique within some ―namespace‖, which means that a UUID

generated by different actors but using the same ―name‖ and ―namespace‖ will cause the

generation of the same exact UUID. The Software Module Management mechanism

requires, whether the ACS or the CPE generates the UUID, that the UUID be generated

in the exact same manner following both the rules defined in Section 4.3 / RFC 4122 [34]

and the rules defined within this Annex.

Section 4.3 / RFC 4122 [34] identifies the following high-level requirements for a

Version 3 UUID:

 The UUIDs generated at different times from the same name in the same namespace MUST be

equal.

 The UUIDs generated from two different names in the same namespace should be different

(with very high probability).

 The UUIDs generated from the same name in two different namespaces should be different with

(very high probability).

 If two UUIDs that were generated from names are equal, then they were generated from the

same name in the same namespace (with very high probability).

The remainder of this Annex defines additional rules that MUST be followed by the ACS

and CPE when generating a UUID as well as under what circumstances a CPE will be

required to generate a UUID.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 171 of 190

H.2 UUID Generation Requirements

The following set of additional requirements ensures that the Version 3 UUID will be

uniform regardless of whether the ACS or CPE generates it:

1) The FQDN ―namespace‖ UUID as defined in Appendix C /RFC 4122 [34] MUST

be used: 6ba7b810-9dad-11d1-80b4-00c04fd430c8

2) The SHA-1 hash algorithm MUST be used instead of MD5

3) The ―name‖ will be the FQDN of the Deployment Unit, which MUST be a

combination of the Deployment Unit‘s Name (the value that will be contained

within the DeploymentUnit.{i}.Name Parameter) and the Deployment Unit

Vendor‘s domain name (the value that will be contained within the

DeploymentUnit.{i}.Vendor Parameter). The format is: ‗<Name> + ―.‖ +

<Vendor> + ―.‖‘. For example, if the DU Vendor is ―broadband-forum.org‖ and

the DU Name is ―sample1‖, then the FQDN of the DU is ―sample1.broadband-

forum.org.‖

Note, as the Deployment Unit‘s Name is used within generation of the FQDN, it MUST be

altered if it contains any characters other than 0-9, a-z, A-Z, _ (underscore), or – (hyphen).

Percent encoding MUST be used to replace any other characters (i.e. a ‗%‘ character followed

by the ASCII hex value of the replaced character). For example, a Deployment Unit Name of

―sample.1‖ would be converted to ―sample%2e1‖.

An example of a Version 3 UUID looks like:

76183ed7-6a38-3890-66ef-a6488efb6690

H.3 CPE Requirements

There are three circumstances when a CPE MUST generate its own UUID:

a) Factory-Installed Deployment Units : a Deployment Unit is installed at factory

time without the aid of an ACS

b) LAN-Side-Installed Deployment Units : a Deployment Unit is installed by a

LAN-Side management mechanism (e.g. UPnP DM SMS, CLI, or GUI) without

the aid of an ACS

c) ACS-Installed Deployment Units : a Deployment Unit is installed by an ACS, but

the ACS either does not send the UUID or sends an empty string as the UUID

within the Install operation of the ChangeDUState RPC.

In these circumstances the CPE MUST generate the UUID as it installs the Deployment

Unit. The ACS can discover / validate the generated UUID by either inspecting the

DUStateChangeComplete or inspecting the Deployment Unit Data Model table.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 172 of 190

Annex I.

Annex I is intentionally left blank

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 173 of 190

Annex J. CWMP Proxy
Management

J.1 Introduction

CWMP can be extended to devices that do not have a native CWMP Endpoint of their

own, but instead support another management protocol or ―Proxy Protocol‖. A CPE

Proxier is a CPE that supports a CWMP Endpoint(s) and also supports one or more Proxy

Protocols (example services include UPnP DM, Z-Wave etc.). A CPE Proxier uses these

Proxy Protocols to manage the devices connected to it, i.e. the Proxied Devices. This

approach is designed to support Proxy Protocols of all types that can exist in the CPE

network now or in the future.

Figure 17 – Proxy management terminology

The function of the CPE Proxier is to seamlessly incorporate all of the elements and

mechanisms/methods of the Proxy Protocol(s). Independent of the implementation, the

ACS manages the Proxied Device through CWMP mechanisms, and is not aware of any

Proxy Protocol commands that may be utilized to complete the requested actions.

In order to support a wide range of Proxy Protocols and devices, CWMP has two ways to

model a Proxied Device; as a Virtual CWMP Device and using an Embedded Object.

A Virtual CWMP Device is used to model a more complex Proxied Device such as a

bridge, router, Set Top Box or devices of similar type. The Virtual CWMP Device

Mechanism represents a Proxied Device with a CWMP Endpoint in the CPE Proxier.

An Embedded Object is used to model a simpler Proxied Device such as a binary sensor,

power switch or devices of similar type. The Embedded Object Mechanism utilizes an

Embedded Object or Service Object within the CPE Proxier itself to represent the

Proxied Device.

This Annex describes each CPE Proxier Mechanism and gives guidelines for dictating

which approach might be appropriate for a given Proxy Protocol.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 174 of 190

J.2 The Virtual CWMP Device Mechanism

The Virtual CWMP Device Mechanism provides the ACS with a CWMP Endpoint

terminated on the CPE Proxier for the Proxied Device. The Virtual CWMP client will

function with the same requirements as a CWMP client. The CPE Proxier that is

supporting a Proxied Device with a Virtual CWMP Device is responsible for creating,

supporting and sustaining a CWMP Data Model for each such Proxied Device.

The CPE Proxier is bound by the CWMP for each device it represents and MUST

maintain a unique ManagementServer.ConnectionRequestURL for itself and for each

device it is Proxying for. When the CPE Proxier establishes a connection to the ACS

using a Virtual CWMP Device it will appear as the Proxied Device.

The Virtual CWMP Device(s) supported by the CPE Proxier MAY share the same IP

address as the CPE Proxier.

J.2.1 Data Model Requirements

For the CPE Proxier the DeviceInfo.SupportedDataModel table MUST only contain

entries relevant to the CPE Proxier.

For the Virtual CWMP Device representing the Proxied Device the

DeviceInfo.SupportedDataModel table MUST only contain entries relevant to the

Proxied Device.

The CPE Proxier supporting a Virtual CWMP Device(s) MUST provide a

ManagementServer.VirtualDevice table with entries for each of the Proxied Devices it

represents, regardless of the Proxy Protocol it uses to communicate with them. The ACS

MAY use the ManagementServer.VirtualDevice table to identify the Proxied Device(s)

that are being proxied by the CPE Proxier.

For each of the Proxied Devices supported by the CPE Proxier, the Virtual Device(s)

Data Model(s) MUST contain an associated DeviceInfo.ProxierInfo Object regardless of

the Proxy Protocol that connects them.

Figure 18 – CPE Proxier and Proxied Device references

J.2.2 Proxied Device Identification and Modeling

The Proxied Device MUST support or provide information required by CWMP in the

DeviceInfo Object (it MUST have a means of uniquely identifying itself beyond the

transport assigned address).

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 175 of 190

The CPE Proxier MUST obtain a unique OUI and Serial Number from the Proxied

Device for the Virtual CWMP Device using the following options in order:

1. Use a unique OUI and Serial Number provided by the Proxied Device via the

Proxy Protocol.

2. If the Proxy Protocol does not provide a unique OUI and Serial Number for the

Proxied Device, the CPE Proxier MUST use the Proxied Device‘s MAC address

to produce the OUI (defined in [36]) and set the Serial Number = MAC address.

3. If the CPE Proxier cannot obtain the Proxied Device‘s MAC address (or a MAC

address is not provided) the CPE Proxier MUST use the unique
32

 physical device

identifier to provide the unique OUI and Serial Number.

When modeling a Proxied Device as a Virtual CWMP Device:

1. The Proxied Device MUST be able to be uniquely identified by its local Proxy

Protocol or extensions that provide identification beyond the transport assigned

addresses each time it comes online.

2. If the Proxied Device supports a connectivity stack similar to the interface stack

described in TR-181 [32], this SHOULD be modeled using the interface stack.

3. The Proxied Device MUST support a Reboot mechanism.

4. The Proxied Device SHOULD support a Download mechanism, and MAY

support other optional RPCs such as FactoryReset and ChangeDUState.

J.2.3 Proxied Device Availability

When a Connection Request is received for the Virtual CWMP Device and the Proxied

Device is offline the CPE Proxier MUST respond with an HTTP 503 failure (see Section

3.2.2). To ensure that the ACS is contacted when the Proxied Device is once again

available, the CPE Proxier MUST send a BOOT Inform via the Virtual CWMP Device

when the Proxied Device comes back online.

If the CPE Proxier fails to successfully complete a CWMP session for a Virtual CWMP

Device, the Virtual CWMP Device MUST follow the session retry logic in Section

3.2.1.1

When a CPE Proxier Reboots:

 The CPE Proxier MUST send a BOOT Inform for itself.

 The CPE Proxier SHOULD NOT send BOOT Informs for any associated Virtual

CWMP Devices.

If the Proxied Device communicates a Reboot to the CPE Proxier, the CPE Proxier MAY

(depending upon policy) send a BOOT Inform for the Virtual Device.

32 Since the mechanism to create the unique OUI and Serial Number from the unique physical device identifier is not

defined, the same physical device may be represented with a different unique OUI and Serial Number from

different CPE Proxiers.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 176 of 190

J.3 The Embedded Object Mechanism

The Embedded Object Mechanism of providing a CWMP interface to a Proxied Device

utilizes the CPE Proxiers Data Model to represent the Proxied Devices. This is done by

representing the Proxied Devices as Object instances within the CPE Proxier‘s (Root or

Service) Data Model.

J.3.1 Proxied Device Data Modeling and Provisioning

To provide visibility of which Objects in the CPE Proxier Data Model represent Proxied

Devices, the CPE Proxier MUST support an EmbeddedDevice table with an entry for

each supported Embedded Object. Each ManagementServer.EmbeddedDevice table entry

MUST reference a row in a Multi-Instance Object that represents the Embedded Device.

The CPE Proxier MUST provide all the DT instances(s) (see Annex B/TR-106 [13]) for

the Proxied Device types it supports in the DeviceInfo.SupportedDataModel table.

The CPE Proxier MUST reference the DeviceInfo.SupportedDataModel table entry(s) for

each Proxied Object in the ManagementServer.EmbeddedDevice table.

For the CPE Proxier supporting multiple unique Proxied Device types within a single or

multiple Proxy Protocols, each unique Proxied Device MUST be represented by at least

one DT instance in the DeviceInfo.SupportedDataModel table and MAY be represented

by multiple entries.

Multiple instances of an Object (all supporting the same device type) MAY be described

by a single DT entry.

Guidelines in using Data Model Objects to support Proxied Devices:

1) The Proxied Devices that are not able to uniquely be identified by their local

Proxy Protocol beyond the transport assigned address (such that they are not

uniquely identified when removed and re-inserted into the Proxy Protocol

network) MUST use Data Model Objects to provide proxy support.

2) The Proxied Devices that do not use an interface stack to model their connectivity

or features SHOULD use Data Model Objects to provide proxy support.

3) The Proxied Devices that might provide no support of a reboot, factory reset

and/or a download command SHOULD use Data Model Objects to provide proxy

support. If such a command is needed it could be reflected in the associated Data

Model, see Section I.3.4.

4) The Proxied Devices that support optional RPCs such as ChangeDUState

SHOULD NOT use Data Model Objects to provide proxy support.

J.3.2 Proxied Device Availability

When the CPE Proxier receives a CWMP command for an Object or Parameter that

resides on the Proxied Device, it MUST attempt to immediately execute the associated

Proxy Protocol command(s) to the Proxied Device.

Prior to the CWMP session timeout the CPE Proxier MUST return a RPC response for

the command.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 177 of 190

If the Proxy Protocol commands are not successfully responded to or applied prior to the

CWMP session timeout the CPE Proxier MUST:

 If the command was to perform configuration, the CPE Proxier MUST return a

committed response (if supported by the RPC
33

).

 If the command was to retrieve information the CPE Proxier MUST return a

cached result for the requested Parameter values.

Until the Proxy Protocol commands are responded to or applied (or retries exceeded), the

CPE Proxier MUST continue to attempt to complete (or verify) the commands via the

Proxy Protocol. While this process continues the CPE Proxier MUST return a cached

result for the effected Parameters and Objects when requested.

When the command(s) are finally responded to or applied (or retries exceeded), the CPE

Proxier MUST update the appropriate

ManagementServer.EmbeddedDevice.{i}.LastSyncTime and/or

ManagementServer.EmbeddedDevice.{i}.CommandProcessed Parameters

Depending upon the Proxy Protocol, devices that are removed from the network or are no

longer available for a period of time SHOULD be removed from the Data Model.

Depending upon the Proxy Protocol when the device returns to online status (or re-

discovered) if there is a unique identifier it SHOULD continue to be represented by the

original Object from initial discovery. The methods to "match" this device with the Data

Model Object entry are implementation dependent.

If the CPE Proxier can detect that the Proxied Device was Rebooted it MAY utilize a

Data Model Parameter to mark the event. The ACS might set the Notification Attribute of

the Data Model Parameter to receive notification that the Proxied Device has Rebooted.

33 SetParameterAttributes does not allow a committed response.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 178 of 190

Appendix I. CPE Proxier
Implementation Guidelines

I.1 Introduction

This Appendix suggests possible implementation guidelines and mechanisms to assist a

CPE Proxier to provide CMWP Proxy Management of a Proxied Device connected via a

Proxy Protocol. Proxy Protocols supported by a CPE Proxier could be synchronous,

asynchronous, IP based, non-IP based, standard, or proprietary.

The CPE Proxier that supports a Proxy Protocol(s) supports the underlying

communications protocol and capabilities to communicate via the Proxy Protocol. The

CPE Proxier also supports the mechanisms needed to discover and manage the Proxied

Devices via the Proxy Protocol.

To provide support for a varying number of Proxy Protocols this Appendix suggests

mechanisms to enable this. Some paradigms are shared by both the Virtual CWMP

Device and Embedded Object Mechanisms; these are covered in Section I.2. For

guidelines specific to Embedded Object Mechanism see Section I.3, for the Virtual

CWMP Device see Section I.4. Section I.5 is used to provide an example of how the Data

Model extensions mentioned in Annex I are used.

I.2 Common Guidelines for the Virtual CWMP Device and
Embedded Object Mechanisms

All of the guidelines in this section apply to both the Virtual CWMP Device and the

Embedded Object Mechanisms proxying of CWMP RPC commands.

I.2.1 Unsupported CWMP RPC Commands by the Proxy Protocol

The CWMP supports an AccessList attribute that might not be supported by a Proxy

Protocol. If the Proxy Protocols cannot support such a mechanism, and the ACS attempts

to modify the AccessList attribute to any other value, the CPE could choose to reject the

modification using a SOAP fault '9001' Request denied.

I.2.2 Support for Proxy Protocol Methods with no Matching RPC

Proxy Protocols might use a separate method call for various functions such as Ping,

TraceRoute, and GetDeviceStatus etc. For these operations CWMP uses the Data Model

to perform such functions (not an RPC). The suggested solution is to have the CPE

Proxier use the Data Model (as defined in the DT instance(s); see Annex B/TR-106 [13])

to model the particular method.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 179 of 190

Here is an example of how a CWMP TraceRoute Diagnostics test that is defined in [32]

would map to the UPnP DM TraceRoute Service:

1. The ACS via CWMP SetParameterValues sets the appropriate Parameter values

for test setup in the TraceRoute Object, and then sets the

TraceRoute.DiagnosticsState to Requested.

2. Next the CPE Proxier initiates a UPnP TraceRoute service request to the Proxied

Device, using the appropriate Parameters from the TraceRoute Object.

3. The CPE Proxier receives notification of the completion of the TraceRoute

diagnostic (either through UPnP notifications from the Proxied Device or polling

the Proxied Device).

4. Using the GetTraceRouteResult service the CPE Proxier retrieves the TraceRoute

diagnostic results from the Proxied Device. These results are stored in the CPE

Proxier for future retrieval from the ACS.

5. The CPE Proxier will send a CWMP Event "8 DIAGNOSTICS COMPLETE" in

a CWMP Inform to the ACS upon the completion of the test.

I.2.3 Support for Transactional Integrity

To provide the transactional integrity requirement in Section 3.7.1.1, during the course of

a session the CPE Proxier might need to return the requested value of any Parameter that

was set previously within the same session. The CPE Proxier could use the requested

value from a previous configuration command in the same session, rather than retrieving

a new (and possibly modified) value for the later request within the same CWMP session.

I.3 Embedded Object Mechanism

The following guidelines are for a CPE Proxier when using the Embedded Object

Mechanism.

I.3.1 Device Discovery

Proxy Protocols have various mechanisms for discovering devices. Some require polling

or listening on a particular TCP port, others might need an API to the supported Proxy

Protocols.

When using the Embedded Object Mechanism the CPE Proxier will only support a

Proxied Device that is represented in a DeviceInfo.SupportedDataModel DT entry(s).

When a Device is initially discovered by the CPE Proxier the following steps occur.

 Retrieve the information from the discovered device, via the Proxy Protocol, that

is necessary to match and verify that the discovered device is supported by the

CPE Proxier.

 If the discovered device is supported, The CPE Proxier could populate the

appropriate Data Model Object and Parameters based on the information retrieved

from the device utilizing the appropriate methods of the Proxy Protocol.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 180 of 190

 The CPE Proxier would then update the ManagementServer.EmbeddedDevice

table to reference the DeviceInfo.SupportedDataModel table DT entry for the

Proxied Device and also reference the newly created Data Model Object.

For the ACS to discover the device, it can utilize the

ManagementServer.EmbeddedDeviceNumberOfEntries Parameter or the number of

entries Parameter for the particular Object representing the device (possibly setting a

change notification on either Parameter for notification of the newly discovered Proxied

Device).

I.3.2 CPE Proxier use of Polling

Polling could be used by the CPE Proxier to support change notifications for Parameters

on the Proxied Device, if a Proxy Protocol does not support such a mechanism.

The CPE Proxier might also utilize polling of Parameter values on the Proxy Protocol to

keep the cached Objects and Parameters 'in sync' with the Proxied Device, and upon

change send the appropriate CWMP notification.

I.3.3 ACS Query of RPC Execution

When the ACS requests Parameter values from the CPE Proxier it could query the

ManagementServer.EmbeddedDevice.{i}.LastSyncTime Parameter to insure the validity

of the data. When the ACS receives a committed response from the CPE Proxier for a

configuration command, it could request the

ManagementServer.EmbeddedDevice.{i}.CommandProcessed Parameter to verify the

state of the command.

I.3.4 Support for Proxy Protocol Methods Reboot and Download

For a Proxied Device that might not fit the criteria for a Virtual CWMP Device, yet

supports a Reboot command or Download feature, an Embedded Object mechanism can

be used. The methods can be supported via Data Model Objects and Parameters that

function similar to the TraceRoute example above (Section I.2.2) and other Data Model

mechanisms (as defined in the DT instance(s); see Annex B/TR-106 [13]).

The Download feature for example, which would typically be used to perform a firmware

upgrade, could be modeled within the object that represents the Embedded Device. The

following Parameters could be used to perform a Download to that Proxied Device:

URL: This is where the file to be downloaded resides.

Username: The username to be used when accessing the URL.

Password: The password to be used when accessing the URL.

StartDownload: A command parameter that when set to true causes the download to

begin.

Status: The results of the download represented as an enumerated string

(NOT_STARTED, PENDING, SUCCESS, FAILED).

ErrorMessage: An empty string unless Status is FAILED, in which case this would

be a description of why the Download failed.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 181 of 190

I.4 Virtual CWMP Device Mechanism

The following guidelines are for a CPE Proxier when using the Virtual CWMP Device

Mechanism.

I.4.1 Device Discovery

Proxy Protocols have various mechanisms for discovering devices. Some require polling

or listening on a particular TCP port, others might need an API to the supported Proxy

Protocols.

The Virtual CPE Device reflects the Data Model it supports in its own

DeviceInfo.SupportedDataModel DT entry.

When a Device is initially discovered by the CPE Proxier the following steps occur.

 Retrieve the information from the discovered device, via the Proxy Protocol, that

is necessary to match and verify that the discovered device is supported by the

CPE Proxier.

 When a CPE Proxier first discovers a device that it supports, the CPE Proxier

represents the Proxied Device and connects to the ACS (as any new device would

when it connects to the ACS for the first time) by sending a BOOTSTRAP event

(described in Table 36).

 Update the ManagementServer.VirtualDevice table in the CPE Proxier.

I.4.2 Request for Session Timeout Extension

One aspect of all Proxy Protocols is the turnaround time. A single Proxy Protocol

command might exceed the CMWP turnaround time. A synchronous CWMP command

could also result in multiple Proxy Protocol transactions or asynchronous transactions to

complete, which increases the number of operations subject to the Proxy Protocol timeout

within the CWMP session timeout.

Figure 19 is an example of how the CWMP turnaround time might exceed the CWMP

session timeout due to the additional Proxy Protocol processing time.

To provide an indication to this condition, the CPE Proxier has the option of notifying the

ACS with the "SessionTimeout" Inform SOAP header (defined in Table 4) requesting to

extend the session timeout. Additionally a Virtual CWMP Device would use the

"SessionTimeout" value in cases where an operation failed to complete in the previous

session due to a timeout.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 182 of 190

Figure 19 – Turnaround time

I.4.3 CPE Proxier use of Caching

Caching by the CPE Proxier can provide a mechanism to store information and provide

CWMP services (Attributes, Notifications) that are otherwise not supported by the Proxy

Protocol.

Below are CWMP mechanisms that might use caching and polling in order to support a

Proxy Protocol mechanism that cannot be relayed. It is not suggested to use the cache for

returning values and setting values to the Proxied Device without attempting to reach the

device first. CWMP Proxying is predicated on the relaying of commands within the

CWMP session as shown in Figure 19.

 Device discovery information

If the CPE Proxier has the capability to retain Proxied Device specific

information such that when the device is rediscovered (possibly with a new

network address) it will appear to be the same Device as when it was initially

discovered, the ACS will be able to manage the Proxied Device as the same

device instead of managing it as a new device.

 Single CWMP RPC results in multiple Proxy Protocol RPCs

Caching might be used in the case where a single CMWP RPC results in

multiple Proxy Protocol method calls. This allows the CPE Proxier to retain

information from each call and supply the single RPC response when finished.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 183 of 190

For example, a GetParameterNames RPC call with NextLevel=false would

result in two UPnP DM commands GetSupportedParameters and GetInstances

to respond to the single GetParamenterNames call.

Another example would be a SetParameterValues RPC call to a CPE Proxier

that supports an asynchronous Proxy Protocol that requires a set command and

a separate get command to verify the set operation is complete.

 Support for unsupported CWMP mechanisms

A Proxy Protocol that does not support Attributes and Notifications might

need the CPE Proxier to utilize caching of the Attributes and Notification

requests.

The CPE Proxier might use polling to keep cached Objects and Parameters ‗in

sync‘ with the Proxied Device, and upon change send the appropriate CWMP

notification.

A Proxy Protocol that does not have a matching ‗Reboot‘ command might

need the CPE Proxier to utilize similar Proxy Protocol commands to interpret

the Reboot request.

I.4.4 Virtual CWMP Device Error Scenarios

The Virtual CWMP Device utilizes connectivity between the CPE Proxier and the ACS,

and the CPE Proxier and the Proxied Device (see Figure 17). In this situation there are

two communication links that are needed to complete the RPC operation. Failure of

either of these communication links might result in a CMWP session fault, and will

require the Virtual CWMP Device to follow the session retry logic in Section 3.2.1.1.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 184 of 190

I.5 Proxy Management Support Example

This is an example of a CPE Proxier that incorporates a Virtual CWMP Device

Mechanism and Embedded Object Mechanism (utilizing Root and Service Objects). The

following figure describes a Router that is also a CPE Proxier device that supports

multiple Proxied Devices.

The NAS 1 and 2 are Proxied Devices that are supported by the Router device via the

Virtual CWMP Device Mechanism.

Utilizing the Embedded Object Mechanism the Router device supports the Meter Devices

1 and 2 via a Proxied Device table ―Device.Meter.{i}.‖ with 2 entries that exist in the

Router Data Model. The Router supports IP cameras 1 and 2 as Proxied Devices utilizing

the ―Device.Services.IPCamera.{i}‖ service Objects.

Figure 20 – Router supporting 6 Proxied Devices

Data Models; The ACS sees 3 Devices, a Router, NAS #1 and NAS #2:

Router

Device.DeviceInfo (DeviceInfo for the Router)

Device.DeviceInfo.SupportedDataModel.1.URL = RouterDevice URL

Device.DeviceInfo.SupportedDataModel.2.URL = IPCamera URL

Device.DeviceInfo.SupportedDataModel.3.URL = Meter URL

Device.ManagementServer.VirtualDevice.1.SerialNumber = (NAS #1 Serial Number)

Device.ManagementServer.VirtualDevice.1.ManufacturerOUI = (NAS #1 Manufacturer

OUI)

Device.ManagementServer.VirtualDevice.1.ProductClass = (NAS #1 Product Class)

Device.ManagementServer.VirtualDevice.1.Host = (NAS #1 Host table entry)

Device.ManagementServer.VirtualDevice.1.ProxyProtocol = UPnP-DM

Device.ManagementServer.VirtualDevice.2.SerialNumber = (NAS #2 Serial Number)

Device.ManagementServer.VirtualDevice.2.ManufacturerOUI = (NAS #2 Manufacturer

OUI)

Device.ManagementServer.VirtualDevice.2.ProductClass = (NAS #2 Product Class

Device.ManagementServer.VirtualDevice.2.Host = (NAS #2 Host table entry)

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 185 of 190

Device.ManagementServer.VirtualDevice.2.ProxyProtocol = UPnP-DM

Device.ManagementServer.ConnectionRequestURL = http://<IP>:8080/connreq

Device.EmbeddedDevice.1.ControllerID = IP1

Device.EmbeddedDevice.1.ProxiedDeviceID = 1

Device.EmbeddedDevice.1.Reference = Device.Services.IPCamera.1

Device.EmbeddedDevice.1.SupportedDataModel=Device

DeviceInfo.SupportedDataModel.2

Device.EmbeddedDevice.1.Host = (IP Camera #1 in Host table)

Device.EmbeddedDevice.1.ProxyProtocol = X_00256D_CamP

Device.EmbeddedDevice.1.LastSyncTime = (last time the device was synced)

Device.EmbeddedDevice.1.CommandProcessed = (state of last command)

Device.EmbeddedDevice.2.ControllerID = IP1

Device.EmbeddedDevice.2.ProxiedDeviceID = 2

Device.EmbeddedDevice.2.Reference = Device.Services.IPCamera.2

Device.EmbeddedDevice.2.SupportedDataModel=Device

DeviceInfo.SupportedDataModel.2

Device.EmbeddedDevice.2.Host = (IP Camera #2 in Host table)

Device.EmbeddedDevice.2.ProxyProtocol = X_00256D_CamP

Device.EmbeddedDevice.2.LastSyncTime = (last time the device was synced)

Device.EmbeddedDevice.2.CommandProcessed = (state of last command)

Device.EmbeddedDevice.3.ControllerID = ZW1

Device.EmbeddedDevice.3.ProxiedDeviceID = 1

Device.EmbeddedDevice.3.Reference = Device.Meter.1

Device.EmbeddedDevice.3.SupportedDataModel=Device

DeviceInfo.SupportedDataModel.3

Device.EmbeddedDevice.3.Host = (Meter #1 in Host table)

Device.EmbeddedDevice.3.ProxyProtocol = Z-Wave

Device.EmbeddedDevice.3.LastSyncTime = (last time the device was synced)

Device.EmbeddedDevice.3.CommandProcessed = (state of last command)

Device.EmbeddedDevice.4.ControllerID = ZW1

Device.EmbeddedDevice.4.ProxiedDeviceID = 2

Device.EmbeddedDevice.4.Reference = Device.Meter.2

Device.EmbeddedDevice.4.SupportedDataModel=Device

DeviceInfo.SupportedDataModel.3

Device.EmbeddedDevice.4.Host = (Meter #2 in Host table)

Device.EmbeddedDevice.4.ProxyProtocol = Z-Wave

Device.EmbeddedDevice.4.LastSyncTime = (last time the device was synced)

Device.EmbeddedDevice.4.CommandProcessed = (state of last command)

Device.Services.IPCamera.1

Device.Services.IPCamera.2

Device.Meter.1

Device.Meter.2

NAS #1

Device.DeviceInfo (DeviceInfo for the NAS #1)

Device.DeviceInfo.SupportedDataModel.1.URL = Device URL

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 186 of 190

Device.DeviceInfo.SupportedDataModel.2.URL = StorageService URL

Device.ManagementServer.ConnectionRequestURL = http://<IP>:8080/connreq-nas1

Device.ProxierInfo.SerialNumber = (Router Serial Number)

Device.ProxierInfo.ManufacturerOUI = (Router Manufacturer OUI)

Device.ProxierInfo.ProductClass = (Router Product Class)

Device.ProxierInfo.ProxyProtocol = UPnP-DM

Device.Services.StorageService.1

NAS #2

Device.DeviceInfo (DeviceInfo for the NAS #2)

Device.DeviceInfo.SupportedDataModel.1.URL = Device URL

Device.DeviceInfo.SupportedDataModel.2.URL = StorageService URL

Device.ManagementServer.ConnectionRequestURL = http://<IP>:8080/connreq-nas2

Device.ProxierInfo.SerialNumber = (Router Serial Number)

Device.ProxierInfo.ManufacturerOUI = (Router Manufacturer OUI)

Device.ProxierInfo.ProductClass = (Router Product Class)

Device.ProxierInfo.ProxyProtocol = UPnP-DM

Device.Services.StorageService.1

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 187 of 190

Appendix II. Alias-Based Addressing
Mechanism – Theory of Operations

II.1 Introduction

This Appendix describes extensions to CPE WAN Management Protocol to allow for the

OPTIONAL CPE Alias-Based Addressing Mechanism (defined in Section 3.6.1) for

Multi-Instance Objects. This mechanism provides:

 Uniform Object identification across devices.

 Direct Object addressing using uniform identifiers.

 Ability to configure CPEs with less interrogation, including Object instance

auto-creation.

The Alias-Based Addressing Mechanism provides an optional alternative to exclusively

using the Instance Number based addressing. A CPE which supports the Alias-Based

Addressing Mechanism can indicate this capability to the ACS, which can leverage it.

The Alias-Based Addressing Mechanism is provided to improve the end-to-end system

scalability and robustness by allowing the ACS more direct control over how Objects are

referenced during configuration or other management activities.

II.2 Multi-Instance Objects Definition

Multi-Instance Objects are designated in TR-069 Data Model documents with the ―{i}‖

moniker. For example, TR-181 Issue 2 [32] defines an Object ―Device.IP.Interface.{i}.‖

and two of its Parameter names are: Name and Status.

Two IP Interface Objects and their Parameters, using Instance Numbers, might look as

follows:

Device.IP.Interface.5.Name = “eth0”

Device.IP.Interface.5.Status = “Disabled”

Device.IP.Interface.30.Name = “fw0”

Device.IP.Interface.30.Status = “Disabled”

In the above example, the CPE has two Objects whose CPE assigned Instance Numbers

are 5 and 30.

The Alias-Based Addressing Mechanism offers an alternative to use text of the ACS‘s

choosing in place of Instance Numbers.

The same IP Interface Objects‘ Parameters, using Instance Aliases, might look as

follows:

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 188 of 190

Device.IP.Interface.[wan].Name = “eth0”

Device.IP.Interface.[wan].Status = “Disabled”

Device.IP.Interface.[vpn].Name = “fw0”

Device.IP.Interface.[vpn].Status = “Disabled”

In above example, the CPE has two Objects whose ACS-assigned Instance Aliases are

wan and vpn.

II.3 Instance Alias as a Data Model Parameter

In addition of its use within a Path Name to identify Object instances, an Alias is also a

non-functional unique key Parameter. Therefore, an Alias Parameter can be handled as an

ordinary TR-069 Parameter. For example, the following Path Name would return the

value of Instance Alias Parameter if used with GetParameterValues RPC:

Device.IP.Interface.5.Alias

The Instance Alias can also be modified as a unique key on the referenced Object

instance using a SetParameterValues.

For example using the Number-Based Addressing:

Device.IP.Interface.5.Alias = “lan”

or using the Alias-Based Addressing:

Device.IP.Interface.[wan].Alias = “lan”

II.4 Multi-Instance Object Creation

Object instances may come into being by one of the following ways:

 They might exist in CPE firmware, based on factory default configuration.

 If writeable they might be created on request of the ACS.

 They might be created by the CPE when it performs local functions such as

configuration via local web UI, DHCP client discovery, Wi-Fi client discovery,

alarm records, etc.

When the ACS needs to create a new Object instance, the CPE provides one via

AddObject RPC. The CPE assigns a unique unpredictable Instance Number and

subsequently the ACS has to refer to the created Object instance using the Instance

Number assigned by the CPE.

With the Alias-Based Addressing Mechanism, the ACS can choose the Instance Alias

that will be assigned to the Object instance at the time of its creation via

SetParameterValues or AddObject RPC‘s. The ACS can then use the Instance Alias

instead of the Instance Number to subsequently address the created Object instance.

With the Alias-Based Addressing Mechanism, the CPE is responsible for providing a

unique Instance Alias in cases where it is not provided upon creation.

When a CPE creates a unique random Instance Alias, unlike the Instance Number the

ACS can choose to modify the Instance Alias.

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 189 of 190

The Alias-Based Addressing Mechanism allows an ACS to choose a uniform naming

mechanism for a particular Object to be used across multiple CPE devices such that they

may be accessed using the same Instance Alias.

II.5 AddObject RPC Extension

The Alias-Based Addressing support extends the AddObject RPC to allow assigning an

Instance Alias to the new Object instance during its creation using the Instance Alias

notation (enclosed between square brackets) following the Path Name.

For example, if an AddObject RPC includes the Path Name Device.IP.Interface.1.IPv6-

Address.[ACS Assigned Instance Alias]., then the CPE would perform the following:

 Create a new Object instance identified by Device.IP Interface.1.IPv6Addr-

ess.{CPE Assigned Instance Number} and Device.IP.Interface.1.IPv6Addr-

ess.[ACS Assigned Instance Alias].

 The Parameter Device.IP.Interface.1.IPv6Address.{CPE Assigned Instance

Number}.Alias is set to ―ACS Assigned Instance Alias‖.

 The {CPE Assigned Instance Number} is returned to the ACS.

Subsequently the created Object instance and its Parameters are addressable as follows:

 By its Instance Number: Device.IP.Interface.1.IPv6Address.{CPE Assigned

Instance Number}.*

 Or by its Instance Alias: Device.IP.Interface.1.IPv6Address.[ACS Assigned

Instance Alias].*

II.6 Auto-Creation of Object Instances

If the ACS wants to modify a Parameter on an Object instance but does not know if the

Object instance exists, it needs to query the CPE for the Object instance. If the Object

instance does not exist, the ACS creates the Object instance with an AddObject RPC and

then modifies the Parameter via a SetParameterValue command.

With the Alias-Based Addressing Mechanism enabled, and the Auto-Create Instance

Mechanism enabled via the ManagementServer.AutoCreateInstances Parameter

(described in Section A.3.2.1), the ACS can call a SetParameterValue for a Parameter in

the Object instance using an Instance Alias in the Parameter Path Name. If the Object

instance matching the Instance Alias does not exist, it will be created via the Auto-Create

Instance Mechanism and the Parameter value is set.

The Alias-Based Addressing Mechanism saves time and resources both on the ACS and

CPE, by avoiding the query of the CPE, as well as the additional round trip for each

called RPC.

For example, if the Path Name Device.IP.Interface.1.IPv6Address.[ACS Assigned

Instance Alias].IPAddress is used with SetParameterValues RPC to set the value ―X‖,

these actions would result:

CPE WAN Management Protocol TR-069 Issue 1 Amendment 4

July 2011 © The Broadband Forum. All rights reserved. Page 190 of 190

 If does not already exist a new Object instance identified by Device.IP.-

Interface.1.IPv6Address.{CPE Assigned Instance Number} or Device.IP.-

Interface.1.IPv6Address.[ACS Assigned Instance Alias] is created.

 The Parameter Device.IP.Interface.1.IPv6Address.{CPE Assigned Instance

Number}.Alias is set to ―ACS Assigned Instance Alias‖,

 The Parameter Device.IP.Interface.1.IPv6Address.{CPE Assigned Instance

Number}.IPAddress is set to ―X‖.

II.7 Support for Alias-Based Addressing Mechanism

The CPE informs the ACS of its support for the Alias-Based Addressing Mechanism by

using the ManagementServer.AliasBasedAddressing Parameter (set to true) within the

Inform RPC.

If the ManagementServer.AliasBasedAddressing Parameter is absent in the Inform

Parameters or its value set to false, The CPE will not provide the Alias-Based Addressing

Mechanism.

If the ACS does not support the Alias-Based Addressing Mechanism it ignores the

ManagementServer.AliasBasedAddressing received Parameter.

If the ACS supports the Alias-Based Addressing Mechanism it can use the Alias-Based

Addressing associated Parameters only if the CPE has previously advertised support for

this by providing the Device.ManagementServer.AliasBasedAddressing Parameter in the

Inform.

End of Broadband Forum Technical Report TR-069

	1 Introduction
	1.1 Functional Components
	1.1.1 Auto-Configuration and Dynamic Service Provisioning
	1.1.2 Software/Firmware Image Management
	1.1.3 Software Module Management
	1.1.4 Status and Performance Monitoring
	1.1.5 Diagnostics

	1.2 Positioning in the End-to-End Architecture
	1.3 Security Goals
	1.4 Architectural Goals
	1.5 Assumptions
	1.6 Terminology
	1.7 Abbreviations
	1.8 Document Conventions

	2 Architecture
	2.1 Protocol Components
	2.2 Security Mechanisms
	2.3 Architectural Components
	2.3.1 Parameters
	2.3.2 File Transfers
	2.3.3 CPE Initiated Sessions
	2.3.4 Asynchronous ACS Initiated Sessions

	3 Procedures and Requirements
	3.1 ACS Discovery
	3.2 Connection Establishment
	3.2.1 CPE Connection Initiation
	3.2.1.1 Session Retry Policy
	3.2.1.2 Use of random source port

	3.2.2 ACS Connection Initiation

	3.3 Use of TLS and TCP
	3.4 Use of HTTP
	3.4.1 Encoding SOAP over HTTP
	3.4.2 Transaction Sessions
	3.4.3 File Transfers
	3.4.4 Authentication
	3.4.5 Digest Authentication
	3.4.6 Additional HTTP Requirements

	3.5 Use of SOAP
	3.6 RPC Support Requirements
	3.6.1 Alias-Based Addressing Mechanism Requirements

	3.7 Transaction Session Procedures
	3.7.1 CPE Operation
	3.7.1.1 Session Initiation
	3.7.1.2 Incoming Requests
	3.7.1.3 Outgoing Requests
	3.7.1.4 Session Termination
	3.7.1.5 Events
	3.7.1.6 Method Retry Behavior

	3.7.2 ACS Operation
	3.7.2.1 Session Initiation
	3.7.2.2 Incoming Requests
	3.7.2.3 Outgoing Requests
	3.7.2.4 Session Termination

	3.7.3 Transaction Examples

	Normative References
	Annex A. RPC Methods
	A.1 Introduction
	A.2 RPC Method Usage
	A.2.1 Data Types
	A.2.2 Instance Identifiers
	A.2.2.1 Instance Number Identifier
	A.2.2.2 Instance Alias Identifier

	A.2.3 Other Requirements

	A.3 Baseline RPC Messages
	A.3.1 Generic Methods
	A.3.1.1 GetRPCMethods

	A.3.2 CPE Methods
	A.3.2.1 SetParameterValues
	A.3.2.2 GetParameterValues
	A.3.2.3 GetParameterNames
	A.3.2.4 SetParameterAttributes
	A.3.2.5 GetParameterAttributes
	A.3.2.6 AddObject
	A.3.2.7 DeleteObject
	A.3.2.8 Download
	A.3.2.9 Reboot

	A.3.3 ACS Methods
	A.3.3.1 Inform
	A.3.3.2 TransferComplete
	A.3.3.3 AutonomousTransferComplete

	A.4 Optional RPC Messages
	A.4.1 CPE Methods
	A.4.1.1 GetQueuedTransfers
	A.4.1.2 ScheduleInform
	A.4.1.3 SetVouchers
	A.4.1.4 GetOptions
	A.4.1.5 Upload
	A.4.1.6 FactoryReset
	A.4.1.7 GetAllQueuedTransfers
	A.4.1.8 ScheduleDownload
	A.4.1.9 CancelTransfer
	A.4.1.10 ChangeDUState

	A.4.2 ACS Methods
	A.4.2.1 Kicked
	A.4.2.2 RequestDownload
	A.4.2.3 DUStateChangeComplete
	A.4.2.4 AutonomousDUStateChangeComplete

	A.5 Fault Handling
	A.5.1 CPE Fault Codes
	A.5.2 ACS Fault Codes

	A.6 RPC Method XML Schema
	Annex B. Removed
	Annex C. Signed Vouchers
	C.1 Overview
	C.2 Control of Options Using Vouchers
	C.3 Voucher Definition
	Annex D. Web Identity Management
	D.1 Overview
	D.2 Use of the Kicked RPC Method
	D.3 Web Identity Management Procedures
	D.4 LAN Side Interface
	Annex E. Signed Package Format
	E.1 Introduction
	E.2 Signed Package Format Structure
	E.2.1 Encoding Conventions

	E.3 Header Format
	E.4 Command List Format
	E.4.1 Command Types
	E.4.2 End Command
	E.4.3 Extract and Add Commands
	E.4.4 Remove Commands
	E.4.5 Move Commands
	E.4.6 Version and Description Commands
	E.4.7 Timeout Commands
	E.4.8 Reboot Command
	E.4.9 Format File System
	E.4.10 Minimum and Maximum Version Commands
	E.4.11 Role Command
	E.4.12 Minimum Storage Commands
	E.4.13 Required Attributes Command

	E.5 Signatures
	Annex F. Device-Gateway Association
	F.1 Introduction
	F.1.1 Terminology

	F.2 Procedures
	F.2.1 Gateway Requirements
	F.2.2 Device Requirements
	F.2.3 ACS Requirements
	F.2.4 Device-Gateway Association Flows
	F.2.5 DHCP Vendor Options

	F.3 Security Considerations
	Annex G. Connection Request via NAT Gateway
	G.1 Introduction
	G.2 Procedures
	G.2.1 CPE Requirements
	G.2.1.1 Binding Discovery
	G.2.1.2 Maintaining the Binding
	G.2.1.3 Communication of the Binding Information to the ACS
	G.2.1.4 UDP Connection Requests

	G.2.2 ACS Requirements
	G.2.2.1 STUN Server Requirements
	G.2.2.2 Determination of the Binding Information
	G.2.2.2.1 STUN-based Approach
	G.2.2.2.2 Notification-based Approach

	G.2.2.3 UDP Connection Requests

	G.2.3 Message Flows

	G.3 Security Considerations
	Annex H. Software Module Management UUID Usage
	H.1 Overview
	H.2 UUID Generation Requirements
	H.3 CPE Requirements
	Annex I.
	Annex J. CWMP Proxy Management
	J.1 Introduction
	J.2 The Virtual CWMP Device Mechanism
	J.2.1 Data Model Requirements
	J.2.2 Proxied Device Identification and Modeling
	J.2.3 Proxied Device Availability

	J.3 The Embedded Object Mechanism
	J.3.1 Proxied Device Data Modeling and Provisioning
	J.3.2 Proxied Device Availability

	Appendix I. CPE Proxier Implementation Guidelines
	I.1 Introduction
	I.2 Common Guidelines for the Virtual CWMP Device and Embedded Object Mechanisms
	I.2.1 Unsupported CWMP RPC Commands by the Proxy Protocol
	I.2.2 Support for Proxy Protocol Methods with no Matching RPC
	I.2.3 Support for Transactional Integrity

	I.3 Embedded Object Mechanism
	I.3.1 Device Discovery
	I.3.2 CPE Proxier use of Polling
	I.3.3 ACS Query of RPC Execution
	I.3.4 Support for Proxy Protocol Methods Reboot and Download

	I.4 Virtual CWMP Device Mechanism
	I.4.1 Device Discovery
	I.4.2 Request for Session Timeout Extension
	I.4.3 CPE Proxier use of Caching
	I.4.4 Virtual CWMP Device Error Scenarios

	I.5 Proxy Management Support Example
	Appendix II. Alias-Based Addressing Mechanism – Theory of Operations
	II.1 Introduction
	II.2 Multi-Instance Objects Definition
	II.3 Instance Alias as a Data Model Parameter
	II.4 Multi-Instance Object Creation
	II.5 AddObject RPC Extension
	II.6 Auto-Creation of Object Instances
	II.7 Support for Alias-Based Addressing Mechanism

